Quanguo MA, Chentao MENG, Jun DONG, Li WU, Jiangwei WANG, Baochun ZHOU. Geotechnical properties ofclayeygravelfrom Likasi, Democratic Republic of Congo[J]. Journal of Xinyang Normal University (Natural Science Edition), 2025, 38(1): 41-50. DOI: 10.3969/j.issn.2097-583X.2025.01.006
Citation: Quanguo MA, Chentao MENG, Jun DONG, Li WU, Jiangwei WANG, Baochun ZHOU. Geotechnical properties ofclayeygravelfrom Likasi, Democratic Republic of Congo[J]. Journal of Xinyang Normal University (Natural Science Edition), 2025, 38(1): 41-50. DOI: 10.3969/j.issn.2097-583X.2025.01.006

Geotechnical properties ofclayeygravelfrom Likasi, Democratic Republic of Congo

More Information
  • Received Date: June 14, 2024
  • Revised Date: September 10, 2024
  • The geotechnical properties of clayey gravel from Likasi, Democratic Republic of Congo, were experimentally investigated. The physical and chemical properties and mineral composition were measured. The Proctor compaction tests, California bearing ratio tests, resilient modulus tests, unconfined compression tests, isotropic consolidation tests, consolidated drained triaxial tests, and falling-head permeability tests were carried out. The geotechnical properties of Likasi clayey gravel were obtained systematically and comprehensively. The results showed that the standard moisture absorption water content of the soil is low. The shapes of soil particles are generally subangular. The soil is well graded and non-expansive. The specific surface area (SSA) and cation exchange capacity (CEC) of the soil are low. That is why the hydrophilicity of the soil is poor. And the soil has good mechanical properties such as shear strength, stiffness, permeability and compaction. The conclusion is that the Likasi clayey gravel can be used as high-quality subgrade fill.

  • [1]
    中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019.
    [2]
    中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People's Republic of China. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020.
    [3]
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical code for building in expansive soil regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013.
    [4]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气体吸附BET法测定固态物质比表面积: GB/T 19587—2017/ISO 9277: 2010[S]. 北京: 中国标准出版社, 2017.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Determination of the specific surface area of solids by gasadsorption using the BET method: GB/T 19587—2017/ISO 9277: 2010[S]. Beijing: Standards Press of China, 2017.
    [5]
    LU Ning, ZHANG Chao. Separating external and internal surface areas of soil particles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(2): 04019126. doi: 10.1061/(ASCE)GT.1943-5606.0002198
    [6]
    ZHOU Baochun, LU Ning. Assessments of water sorption methods to determine soil's specific surface area[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(8): 04021066. doi: 10.1061/(ASCE)GT.1943-5606.0002579
    [7]
    周葆春, 赵鑫鑫, 马全国, 等. 9种土样高吸力下的持水特征[J]. 岩土工程学报, 2021, 43(2): 236-244.

    ZHOU Baochun, ZHAO Xinxin, MA Quanguo, et al. Soil-water retention term of 9 kinds of soils under high suctions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 236-244.
    [8]
    马全国, 易先达, 郎梦婷, 等. 信阳原状黏土的岩土工程特性[J]. 信阳师范学院学报(自然科学版), 2022, 35(2): 310-317. doi: 10.3969/j.issn.1003-0972.2022.02.024

    MA Quanguo, YI Xianda, LANG Mengting, et al. Geotechnical properties of undisturbed Xinyang clay[J]. Journal of Xinyang Normal University (Natural Science Edition), 2022, 35(2): 310-317. doi: 10.3969/j.issn.1003-0972.2022.02.024
    [9]
    周葆春, 单丽霞, 郎梦婷, 等. 基于国标试验的黏土真实缩限值确定[J]. 岩土工程学报, 2022, 44(8): 1535-1540.

    ZHOU Baochun, SHAN Lixia, LANG Mengting, et al. Identifying true shrinkage limit of clay by updating experiments in Chinese standard GB/T 50123-2019[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1535-1540.
    [10]
    马全国, 赵垒, 郎梦婷, 等. 7种重塑黏土的一维压缩-卸荷行为[J]. 信阳师范学院学报(自然科学版), 2023, 36(2): 306-313. doi: 10.3969/j.issn.1003-0972.2023.02.024

    MA Quanguo, ZHAO Lei, LANG Mengting, et al. One-dimensional compression-swelling behavior of seven reconstituted clays[J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(2): 306-313. doi: 10.3969/j.issn.1003-0972.2023.02.024
    [11]
    周葆春, 晏钰哲, 陈翔宇, 等. 膨胀土胀缩性与裂隙性的湿干循环效应[J]. 信阳师范学院学报(自然科学版), 2023, 36(4): 647-655. doi: 10.3969/j.issn.1003-0972.2023.04.022

    ZHOU Baochun, YAN Yuzhe, CHEN Xiangyu, et al. Effects of cyclic wetting and drying on swelling-shrinkage and cracking of compacted expansive soil[J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(4): 647-655. doi: 10.3969/j.issn.1003-0972.2023.04.022
    [12]
    LUO Shengmin, ZHOU Baochun, LIKOS W J, et al. Determining capillary pore-size distribution of soil from soil-water retention curve[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2024, 150(2): 04023138. doi: 10.1061/JGGEFK.GTENG-11647
    [13]
    ASTM International. Standard practice for classification of soils for engineering purposes (unified soil classification system): ASTM D2487-17[S]. Conshohocken: ASTM International, 2017.
    [14]
    周葆春, 李颖, 马全国, 等. 低应力下膨胀土的压缩与剪切行为[J]. 信阳师范学院学报(自然科学版), 2022, 35(1): 157-167. doi: 10.3969/j.issn.1003-0972.2022.01.027

    ZHOU Baochun, LI Ying, MA Quanguo, et al. Compressibility and shear strength of expansive soil at low stresses[J]. Journal of Xinyang Normal University (Natural Science Edition), 2022, 35(1): 157-167. doi: 10.3969/j.issn.1003-0972.2022.01.027
    [15]
    孔令伟, 周葆春, 白颢, 等. 荆门非饱和膨胀土的变形与强度特性试验研究[J]. 岩土力学, 2010, 31(10): 3036-3042. doi: 10.3969/j.issn.1000-7598.2010.10.002

    KONG Lingwei, ZHOU Baochun, BAI Hao, et al. Experimental study of deformation and strength characteristics of Jingmen unsaturated expansive soil[J]. Rock and Soil Mechanics, 2010, 31(10): 3036-3042. doi: 10.3969/j.issn.1000-7598.2010.10.002
    [16]
    赵垒. 郑州粉土应力-应变-强度特征与本构描述[D]. 信阳: 信阳师范学院, 2023.

    ZHAO Lei. Stress-strain-strength behaviour and constitutive description of Zhengzhou silt[D]. Xinyang: Xinyang Normal University, 2023.
    [17]
    KNAPPETT J, CRAIG R F. Craig's soil mechanics[M]. Boca Raton: CRC Press, 2020.
    [18]
    刘松玉. 土力学[M]. 5版. 北京: 中国建筑工业出版社, 2020.

    LIU Songyu. Soil mechanics[M]. 5th ed. Beijing: China Architecture & Building Press, 2020.
    [19]
    DAS B M. Advanced soil mechanics[M]. 5th ed. Boca Raton: CRC Press, 2019.
    [20]
    周葆春, 孔令伟, 郭爱国. 不同水化状态下的压实膨胀土应力-应变-强度特征[J]. 岩土力学, 2012, 33(3): 641-651.

    ZHOU Baochun, KONG Lingwei, GUO Aiguo. Stress-strain-strength behaviour of compacted expansive soil under different hydration states[J]. Rock and Soil Mechanics, 2012, 33(3): 641-651.
    [21]
    周葆春. 应力路径对重塑黏土有效抗剪强度参数的影响[J]. 华中科技大学学报(自然科学版), 2007, 35(12): 83-86.

    ZHOU Baochun. Influence of stress path on effective shear strength parameters of reshaped clay[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007, 35(12): 83-86.

Catalog

    Article Metrics

    Article views (36) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return