二阶连续变量线性脉冲时滞差分方程的振动性
The oscillation of second order impulsive delay differential equations with continuous arguments
-
摘要: 研究了具有连续变量的脉冲时滞差分方程Δ2τx( t) +∑ni=1pi( t) x( t-σi) =0 ,t≠ tk,x( t+ k ) -x( tk) =bkx( tk) ,t=tk,的振动性 ,其中σi0 ;τ0 ,pi∈ ( R+ ,R+ ) ,( i=1 ,2 ,… ,n) ,得到了该方程所有解振动的两个充分条件Abstract: s:The second order impulsive delay differential equations with continuous arguments Δ~2_τx(t)+∑ni=1p_i(t)x(t-σ_i)=0,t≠t_k, x(t~+_k)-x(t_k)=b_kx(t_k),t=t_k, in which σ_i0;τ0,p_i∈(R~+,R~+),(i=1,2,...,n),are observed in this paper,and two suffcient conditions for oscillation of all solutions of the equation are obtained.