半群T_E(X)中的一个同余(英文)

A congruence on T E(X)

  • 摘要: 设TX 表示集合X 上的全变换半群,Con(S)表示半群S上的同余格. 对X 上任一非平凡等价关 系E,令TE(X)= {f∈Tx:(a,b)∈E,(f(a),f(b))∈E}. 据[4],TE(X)构成一个α半群,且Con(TE(X))可以分解为三个互不相交的完全子格,其中的一个为[C(E),Ca(E)].本文报道了TE(X)的同余τ,并证明了当E为单等价关系时,τ是[C(E),Ca(E)]中的唯一原子.

     

    Abstract: T X denotes the full transformation semigroup on a set X and Con(S) denotes the complete lattice of all congruences on a semigroup S. For a nontrivial equivalence E on X, let T E(X)=f∈T X:(a,b) ∈E,(f(a),f(b)∈E. As we have seen in 4,T E(X) forms an α semigroup and Con(T E(X)) can be decomposed into three disjoint complete sublattices, one of which is C(E),C α(E).In this paper we find out a congruence τ on T E(X) which is contained in C(E),C α(E) and we show that whenever E is a simple equiv...

     

/

返回文章
返回