Poincar-Chetaev变量下非线性非完整相对论系统的运动方程

Motion equations of nonlinear nonholonomic rotational relativistic systems in Poincar-Chetaev varia

  • 摘要: 研究 Poincaré-Chetaev变量下非线性非完整相对论动力学系统的运动方程 .首先 ,由相对论性DAlembert-Lagrange原理导出 Chaplygin型方程、Nielsen型方程和 Appell型方程 ;其次 ,研究 Chaplygin方程与 Appell方程的等价性问题 ;最后讨论了相对论分析力学与经典分析力学之间的关系 .

     

    Abstract: The motion equations of nonlinear nonholonomic rotational relativistic systems in Poincaré Chetaev variables are studied.Firstly,the equations of Chaplygin's form,Nielsen's form and Appell's form are derived by the DAlembert Lagrange's principle.Then the equivalent problem of the Chaplygin's equation to the Appell's equation and the relative relations between rotational relativistic analytical mechanics and the classical analytical mechanics is discussed.

     

/

返回文章
返回