多元时间序列模式异常研究
Outlier Pattern Research of Multivariate Time Series
-
摘要: 为了提高多元时间序列模式异常检测算法的有效性和合理性,在k-近邻局部异常检测算法的基础上,结合基于主元分析的多元时间序列的降维方法,对多元时间序列模式异常进行检测.实验结果验证了该算法对多元时间序列模式异常检测的准确性和有效性Abstract: In order to improve the efficiency of outlier model detection algorithm of multivariate time series(MTS),based on the k-nearest neighbor local outlier detection algorithm,the principal component analysis of the multivariate time series method for dimensionality reduction method was used to detect anomalies of multivariate time series model.The experimental results show that the proposed algorithm detects MTS outlier pattern series more accurately and more efficiently