|A(G)|=2~4p~2q的有限交换群G的构造
The Structures of Finite Abelian Groups with |A(G)|=2~4p~2q
-
摘要: 利用有限交换群G的自同构群A(G)的阶来刻划群G的结构,证明了当|A(G)|=24p2q(p,q是不同的奇素数)时,G至多有150型.Abstract: The structures of Abelian group G was discussed by order of automorphism group A(G)and all types of finite Abelian group G was obtained when the order of A(G) equals to 24p2q(p,q are different odd primes).The following theorem is proved:let G be finite Abelian group,if |A(G)|=24p2q(p,q are different odd primes),then G has at most 150 types.
-
Keywords:
- automorphism group /
- Abelian group /
- structure of group /
- Euler s function
-
-
[1] 班桂宁. 不充当自同构群的有限群[J]. 数学进展, 1997,(04) [2] 刘伟俊,李慧陵. Camina-Gagen定理的一个推广(Ⅱ)[J]. 数学进展, 1996,(05)
计量
- 文章访问数: 872
- HTML全文浏览量: 56
- PDF下载量: 5