|A(G)|=2~4p~2q的有限交换群G的构造

张全超, 胡明, 胡余旺

张全超, 胡明, 胡余旺. |A(G)|=2~4p~2q的有限交换群G的构造[J]. 信阳师范学院学报(自然科学版), 2009, 22(2): 161-164.
引用本文: 张全超, 胡明, 胡余旺. |A(G)|=2~4p~2q的有限交换群G的构造[J]. 信阳师范学院学报(自然科学版), 2009, 22(2): 161-164.
ZHANG Quan-chao, HU Ming, HU Yu-wang. The Structures of Finite Abelian Groups with |A(G)|=2~4p~2q[J]. Journal of Xinyang Normal University (Natural Science Edition), 2009, 22(2): 161-164.
Citation: ZHANG Quan-chao, HU Ming, HU Yu-wang. The Structures of Finite Abelian Groups with |A(G)|=2~4p~2q[J]. Journal of Xinyang Normal University (Natural Science Edition), 2009, 22(2): 161-164.

|A(G)|=2~4p~2q的有限交换群G的构造

基金项目: 

河南省自然科学基金项目(0511010200)

The Structures of Finite Abelian Groups with |A(G)|=2~4p~2q

  • 摘要: 利用有限交换群G的自同构群A(G)的阶来刻划群G的结构,证明了当|A(G)|=24p2q(p,q是不同的奇素数)时,G至多有150型.
    Abstract: The structures of Abelian group G was discussed by order of automorphism group A(G)and all types of finite Abelian group G was obtained when the order of A(G) equals to 24p2q(p,q are different odd primes).The following theorem is proved:let G be finite Abelian group,if |A(G)|=24p2q(p,q are different odd primes),then G has at most 150 types.
  • [1] 班桂宁. 不充当自同构群的有限群[J]. 数学进展, 1997,(04)
    [2] 刘伟俊,李慧陵. Camina-Gagen定理的一个推广(Ⅱ)[J]. 数学进展, 1996,(05)
计量
  • 文章访问数:  872
  • HTML全文浏览量:  56
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-03-25
  • 发布日期:  2009-04-09

目录

    /

    返回文章
    返回