几类特殊图的一般指标集
General Index Sets of Some Particular Graphs
-
摘要: 令G=(V (G), E (G))为一简单连通图, V (G)和E (G)分别是图G的顶点集和边集。一个顶点标号函数f: V (G)→Z2诱导出一个边标号函数f*: E (G)→Z2, 其中v1 v2∈E (G), 有f*(v1v2)=f (v1)+f (v2)。当标1和标0的顶点数相差m (m < |V (G)|)时, 标号为1和0的边数差的集合称为图G的一般指标集。给出圈、路和Cn×P2的一般指标集。Abstract: Let G=(V(G), E(G)) be a simple connected graph with vertex set V(G) and edge set E(G), respectively. A vertex labeling f: V(G)→Z2 induces an edge labeling f*: E(G)→Z2 defined by f*(v1v2)=f(v1)+f(v2) for each edge v1v2∈E(G). Given the difference between numbers of vertex labeled 1 and 0 is m (m < |V(G)|), the set of differences between numbers of edges labeled 1 and 0 is called the general index set of graph G. The general index sets of cycle, path and Cn×P2 are determined.