多标记决策表的最优粒度选择

Optimal Granularity Selection in Multi-label Decision Table

  • 摘要: 针对多标记决策分类中的粒度选择问题,提出了基于决策表的全局最优粒度选择方法和基于对象的局部最优粒度选择方法.首先基于多个粒度层次分析了多标记决策表的粒度划分,引入了多粒度多标记决策表的粒化粗糙度度量方法;然后针对协调决策表和不协调决策表讨论了通用的决策表最优粒度选择方法;最后,针对全局最优粒度选择不能使每个对象都达到最优粒度的局限性,以及不协调决策表中有些对象关于决策标记分类的不确定性问题,讨论了对象的局部最优粒度选择方法,并结合实例验证了该方法的有效性.

     

    Abstract: To solve the problem of granularity selection in multi-label decision classification, a global and object-based optimal granularity selection method is proposed. Firstly, the granularity partitioning of multi-label decision tables is analyzed based on multiple granularity levels and the granulation roughness measurement method of multi-label decision tables is introduced. Then the general optimal granularity selection method is discussed for coordinated decision tables and uncoordinated decision tables. Finally, in view of the limitation that the global optimal granularity selection cannot make every object reach the optimal granularity, and the uncertainty of some objects in the uncoordinated decision table regarding the classification of decision markers, the local optimal granularity selection method of objects is discussed, and the effectiveness of the method is verified by an example.

     

/

返回文章
返回