基于多尺度LBP和复合核的高光谱图像分类方法

Hyperspectral Image Classification Based on Multi-scale Local Binary Pattern and Composite Kernel Function

  • 摘要: 为了更好地利用高光谱图像的纹理特征信息,提出了一个基于多尺度LBP和复合核的高光谱图像分类方法.利用LBP的两个最佳尺度来提取高光谱图像的纹理特征,将得到的空间纹理信息输入高斯核函数中,得到两个空间核,与直接提取光谱信息得到的光谱核结合在一起组成一个复合核,将这个复合核输入支持向量机(Support Vector Machine,SVM)进行分类得到分类结果.结果表明,在Indian Pines和Pavia University这两个真实的数据集上分类精度分别达到0.994 8和0.991 8,明显优于其他同类杰出的高光谱图像分类方法.

     

    Abstract: In order to better make full use of the texture information of hyperspectral image, a hyperspectral image classification method is proposed based on Multiscale Local Binary Pattern and Composite Kernel function (MLBPCK). Firstly, two optimal scales of the LBP are used to extract the texture features of the hyperspectral image, then the above spatial texture features are introduced into Gaussian kernel function for obtaining two spatial kernels. Moreover, the two spatial kernels and the spectral kernel obtained by introducing spectral information into Gaussian kernel function are combined to form a composite kernel. Finally, the composite kernel is input into a support vector machine (SVM) for classification to obtain classification results. Experimental results show that the classification accuracy on Indian Pines and Pavia University are 0.994 8 and 0.991 8, respectively, which is significantly better than other similar hyperspectral image classification methods.

     

/

返回文章
返回