二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展

刘小刚 李梦 杜贵如 董雨菡 鲁凯欣 刘醒龙 陈高燕 杜兰馨

刘小刚, 李梦, 杜贵如, 董雨菡, 鲁凯欣, 刘醒龙, 陈高燕, 杜兰馨. 二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展[J]. 信阳师范学院学报(自然科学版), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
引用本文: 刘小刚, 李梦, 杜贵如, 董雨菡, 鲁凯欣, 刘醒龙, 陈高燕, 杜兰馨. 二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展[J]. 信阳师范学院学报(自然科学版), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
LIU Xiaogang, LI Meng, DU Guiru, DONG Yuhan, LU Kaixin, LIU Xinglong, CHEN Gaoyan, DU Lanxin. Research Progress on Generation Mechanism and Detection Methods of Reactive Oxygen Species During Photocatalytic Reaction Based on TiO2[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
Citation: LIU Xiaogang, LI Meng, DU Guiru, DONG Yuhan, LU Kaixin, LIU Xinglong, CHEN Gaoyan, DU Lanxin. Research Progress on Generation Mechanism and Detection Methods of Reactive Oxygen Species During Photocatalytic Reaction Based on TiO2[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027

二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展

doi: 10.3969/j.issn.1003-0972.2021.01.027
基金项目: 

国家自然科学基金项目(21902140);河南省科技计划项目(192102210005);信阳师范学院“南湖学者奖励计划”青年项目

详细信息
    作者简介:

    刘小刚(1986-),男,甘肃平凉人,讲师,博士,硕士生导师,主要从事能源与环境催化材料的设计及光电化学性能优化等研究.

    通讯作者:

    刘小刚, lxg133298@163.com

  • 中图分类号: O643.36;O644.1

Research Progress on Generation Mechanism and Detection Methods of Reactive Oxygen Species During Photocatalytic Reaction Based on TiO2

  • 摘要: 活性氧物种(Reactive Oxygen Specie,ROS)在光催化反应中起着非常重要的作用.以二氧化钛(TiO2)为例,利用49篇文献简要综述了其在光催化反应过程中几种典型ROS,如:超氧自由基(·O-2)、羟基自由基(·OH)、单线态氧(1O2)和过氧化氢(H2O2)的产生过程,列举了ROS的一般检测方法,对ROS在光催化反应研究中存在的问题和发展趋势给出了建议和展望.
  • [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
    [2] LIAO G, GONG Y, ZHANG L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts:The"holy grail"for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy&Environmental Science, 2019, 12(7):2080-2147.
    [3] LIU X, DONG G, LI S, et al. Direct observation of charge separation on anatase TiO2 crystals with selectively etched 001 facets[J]. Journal of the American Chemical Society, 2016, 138(9):2917-2920.
    [4] BALAJKA J, HINES M A, DEBENEDETTI W J, et al. High-affinity adsorption leads to molecularly ordered interfaces on TiO (2) in air and solution[J]. Science, 2018, 361(6404):786-789.
    [5] PARK J Y. How titanium dioxide cleans itself[J]. Science, 2018, 361(6404):753.
    [6] WANG L, ZHANG X, YU X, et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity[J]. Advanced Materials, 2019, 31(33):1901965.
    [7] MA H, ZHAO L, GUO L, et al. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV[J]. Journal of Hazardous Materials, 2019, 369:719-726.
    [8] HUANG S, YUANGUO X U, LIU Q, et al. Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts[J]. Applied Catalysis B:Environmental, 2017, 218:174-185.
    [9] KANG S, ZHANG L, YIN C, et al. Fast flash frozen synthesis of holey few-layer g-C3N4 with high enhancement of photocatalytic reactive oxygen species evolution under visible light irradiation[J]. Applied Catalysis B-Environmental, 2017, 211:266-274.
    [10] CHEN P, WANG F, CHEN Z, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst:the significant roles of reactive oxygen species[J]. Applied Catalysis B:Environmental, 2017, 204:250-259.
    [11] 刘小刚,陈苗苗,吴振威,等.具有不同{001}晶面暴露分数的纳米TiO2制备及其光催化性能研究[J].信阳师范学院学报(自然科学版), 2019, 32(2):298-301. LIU Xiaogang, CHEN Miaomiao, WU Zhenwei, et al. Preparation and photocatalytic activity study of nano-TiO2 with different exposed percentage of{001}facets[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(2):298-301.
    [12] 孙振亚,李玲芝,杨红刚,等.二氧化钛光催化还原银离子探针反应的研究[J].信阳师范学院学报(自然科学版), 2016, 29(1):79-83. SUN Zhenya, LI Lingzhi, YANG Honggang, et al. Photocatalytic reduction of silver ion probe on nano titanium dioxide[J]. Journal of Xinyang Normal University (Natural Science Edition), 2016, 29(1):79-83.
    [13] 杨莹琴,陈庆亮,王庆之.膨润土负载N/Ag共掺杂TiO2光催化剂的制备及光催化降解性能[J].信阳师范学院学报(自然科学版), 2019, 32(4):631-634. YANG Yingqin, CHEN Qingliang, WANG Qingzhi. Preparation and photocatalytic degradation effect of bentonite supported N/Ag Co-doped TiO2 photocatalysts[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(4):631-634.
    [14] CHEN Chen, ZHU Xiaorong, WEN Xiaojian, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry, 2020, 12(8):717-724.
    [15] PARK J, LIM J, PARK Y, et al. In-situ-generated reactive oxygen species in pre-charged titania and tungsten trioxide composite catalyst membrane filters:application to As (III) oxidation in the absence of irradiation[J]. Environmental Science and Technology, 2020, 54(15):9601-9608.
    [16] NONELL S, FLORS C. Singlet oxygen:Applications in biosciences and nanosciences[M]. Cambridge:Royal Society of Chemistry,2016.
    [17] BARD A J, ROGER P, JOSEPH J. Standard potentials in aqueous solution[M]. New York:M Dekker, 1985.
    [18] BIELSKI B H J, CABELLI D E, ARUDI R L, et al. Reactivity of HO2/O-2 radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1985, 14(4):1041-1100.
    [19] GONG Y, ZHOU M, ANDREWS L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes[J]. Chemical Reviews, 2009, 109(12):6765-6808.
    [20] SHAO M, LIU P, ADZIC R R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. Journal of the American Chemical Society, 2006, 128(23):7408-7409.
    [21] KAKUMA Y, NOSAKA A Y, NOSAKA Y. Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(28):18691-18698.
    [22] KOMAGUCHI K, MARUOKA T, NAKANO H, et al. Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by sub-band-gap illumination[J]. The Journal of Physical Chemistry C, 2010, 114(2):1240-1245.
    [23] CARTER E, CARLEY A F, MURPHY D M. Evidence for O2-radical stabilization at surface oxygen vacancies on polycrystalline TiO2[J]. The Journal of Physical Chemistry C, 2007, 111(28):10630-10638.
    [24] LI Y, ZHANG W, NIU J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano, 2012, 6(6):5164-5173.
    [25] HIRAKAWA T, NOSAKA Y. Selective production of superoxideions and hydrogen peroxide over nitrogen-and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems[J]. The Journal of Physical Chemistry C, 2008, 112(40):15818-15823.
    [26] ISHIBASHI K, FUJISHIMA A, WATANABE T, et al. Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water[J]. The Journal of Physical Chemistry B, 2000, 104(20):4934-4938.
    [27] SAITO H, NOSAKA Y. Mechanism of singlet oxygen generation invisible-light-induced photocatalysis of gold-nanoparticle-deposited titanium dioxide[J]. The Journal of Physical Chemistry C, 2014, 118(29):15656-15663.
    [28] BAUR E, NEUWEILER C. Photolytic formation of hydrogen peroxide[J]. Helvetica Chimica Acta, 1927, 10:901-907.
    [29] SHIRAISHI Y, KANAZAWA S, TSUKAMOTO D, et al. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water[J]. ACS Catalysis, 2013, 3(10):2222-2227.
    [30] NAKAMURA R, NAKATO Y. Primary intermediates of oxygen photoevolution reaction on TiO2(rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements[J]. Journal of the American Chemical Society, 2004, 126(4):1290-1298.
    [31] SAHEL K, ELSELLAMI L, MIRALI I, et al. Hydrogen peroxide and photocatalysis[J]. Applied Catalysis B:Environmental, 2016, 188:106-112.
    [32] SCHWEITZER C, SCHMIDT R. Physical mechanisms of generation and deactivation of singlet oxygen[J]. Chemical Reviews, 2003, 103(5):1685-1757.
    [33] ADAM W, KAZAKOV D V, KAZAKOV V P. Singlet-oxygen chemiluminescence in peroxide reactions[J]. Chemical Reviews, 2005, 105(9):3371-3387.
    [34] HARADA Y, SUZUKI K, HASHIMOTO M, et al. Chemiluminescence from singlet oxygen that was detected at two wavelengths and effects of biomolecules on it[J]. Talanta, 2009, 77(3):1223-1227.
    [35] DAIMON T, HIRAKAWA T, KITAZAWA M, et al. Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts[J]. Applied Catalysis A:General, 2008, 340(2):169-175.
    [36] YAGI M, TAKEMOTO S, SASASE R. Measurement of concentration of singlet molecular oxygen in the gas phase by electron paramagnetic resonance[J]. Chemistry Letters, 2004, 33(2):152-153.
    [37] NAKAMURA K, ISHIYAMA K, IKAI H, et al. Reevaluation of analytical methods for photogenerated singlet oxygen[J]. Journal of Clinical Biochemistry and Nutrition, 2011, 49(2):87-95.
    [38] DI CREDICO B, BELLOBONO I R, D'ARIENZO M, et al. Efficacy of the reactive oxygen species generated by immobilized TiO2 in the photocatalytic degradation of diclofenac[J]. International Journal of Photoenergy, 2015, 2015:1-13.
    [39] FENOGLIO I, PONTI J, ALLOA E, et al. Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes[J]. Nanoscale, 2013, 5(14):6567-6576.
    [40] SANTAELLA C, ALLAINMAT B, SIMONET F, et al. Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes escherichia coli to cadmium[J]. Environmental Science&Technology, 2014, 48(9):5245-5253.
    [41] DIMITRIJEVIC N M, ROZHKOVA E, RAJH T. Dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species[J]. Journal of the American Chemical Society, 2009, 131(8):2893-2899.
    [42] NAKABAYASHI Y, NOSAKA Y. The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO2 single crystals[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(45):30570-30576.
    [43] 方艳芬,黄应平,陈和春,等.二氧化钛光催化体系中的羟基自由基的测定[J].分析化学, 2006, 34(增1):83-86. FANG Yanfen, HUANG Yingping, CHEN Hechun, et al. Determination hydroxyl radical in titania photocatalytic system[J]. Chinese Journal of Analytical Chemistry, 2006, 34

    (S1):83-86.
    [44] NODA H, OIKAWA K, OHYA-NISHIGUCHI H, et al. Efficient hydroxyl radical production and their reactivity with ethanol in the presence of photoexcited semiconductors[J]. Bulletin of the Chemical Society of Japan, 1994, 67(8):2031-2037.
    [45] ZHANG J, NOSAKA Y. Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types[J]. The Journal of Physical Chemistry C, 2014, 118(20):10824-10832.
    [46] LIAO H, REITBERGERT. Generation of free OH aq radicals by black light illumination of degussa (evonik) P25 TiO2 aqueous suspensions[J]. Catalysts, 2013, 3(2):418-443.
    [47] LIU C, YAN Y, ZHANG X, et al. Regulating the pro-and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of monascus pigments[J]. Nanoscale, 2020, 12(5):3068-3075.
    [48] XU Q, WANG Y, CHI M, et al. Porous polymer-titanium dioxide/copper composite with improved photocatalytic activity toward degradation of organic pollutants in wastewater:fabrication and characterization as well as photocatalytic activity evaluation[J]. Catalysts, 2020, 10:310.
    [49] MENG F, GUO L, ZOU H, et al. Mechanism study on TiO2 inducing O2-and OH radicals in O3/H2O2 system for high-efficiency NO oxidation[J]. Journal of Hazardous Materials, 2020, 399:123033.
  • [1] 刘小刚, 陈苗苗, 吴振威, 侯阳阳, 秦梦宇.  具有不同{001}晶面暴露分数的纳米TiO2制备及其光催化性能研究 . 信阳师范学院学报(自然科学版), 2019, 32(2): 298-301. doi: 10.3969/j.issn.1003-0972.2019.02.022
    [2] 汪玲, 李雪.  Ag/AgBr/Bi4Ti3O12催化剂的制备及可见光催化降解卡马西平 . 信阳师范学院学报(自然科学版), 2019, 32(2): 293-297. doi: 10.3969/j.issn.1003-0972.2019.02.021
    [3] 杨莹琴, 陈庆亮, 王庆之.  膨润土负载N/Ag共掺杂TiO2光催化剂的制备及光催化降解性能 . 信阳师范学院学报(自然科学版), 2019, 32(4): 631-634. doi: 10.3969/j.issn.1003-0972.2019.04.021
    [4] 李建梅, 蔡超, 薛敏钊, 张永明, 刘燕刚.  TiO2/全氟磺酸树脂杂化薄膜的低温制备及其光催化性能 . 信阳师范学院学报(自然科学版), 2018, 31(3): 449-452. doi: 10.3969/j.issn.1003-0972.2018.03.020
    [5] 王贵昌.  表面活性氧物种对A—H (A=C,O,N)键活化机理的研究进展 . 信阳师范学院学报(自然科学版), 2018, 31(2): 333-338. doi: 10.3969/j.issn.1003-0972.2018.02.031
    [6] 朱建君, 陈宇洋, 朱威研, 徐帆, 田秀丽, 杨宁.  石墨烯纳米复合物的制备及其可见光催化性能 . 信阳师范学院学报(自然科学版), 2018, 31(1): 78-82. doi: 10.3969/j.issn.1003-0972.2018.01.015
    [7] 杨莹琴, 陈庆亮.  光催化剂沸石/Fe2O3/TiO2的制备、表征及性能 . 信阳师范学院学报(自然科学版), 2016, 29(4): 567-570. doi: 10.3969/j.issn.1003-0972.2016.04.018
    [8] 赵彩云, 刘霞, 郭燕, 朱鋆珊.  SO42-/TiO2 /HZSM- 5 的制备及其催化性能研究 . 信阳师范学院学报(自然科学版), 2015, 28(2): 252-255. doi: 10.3969/j.issn.1003-0972.2015.02.023
    [9] 刘丽静.  稀土Dy3+掺杂TiO2的制备及光催化性能研究 . 信阳师范学院学报(自然科学版), 2015, 28(1): 98-101. doi: 10.3969/j.issn.1003-0972.2015.01.023
    [10] 杨鑫, 刘金杭, 崔影.  TiO2 - C纳米复合材料负载钯催化剂的制备及其对甲酸的电催化氧化 . 信阳师范学院学报(自然科学版), 2015, 28(4): 563-566. doi: 10.3969/j.issn.1003-0972.2015.04.024
    [11] 徐向军, 邢晓轲, 卫世乾.  Zn掺杂对 TiO2晶相及光催化性能的影响 . 信阳师范学院学报(自然科学版), 2015, 28(2): 248-251. doi: 10.3969/j.issn.1003-0972.2015.02.022
    [12] 刘丽静.  Eu3+/TiO2光催化剂降解罗丹明B . 信阳师范学院学报(自然科学版), 2014, 27(1): 96-99. doi: 10.3969/j.issn.1003-0972.2014.01.025
    [13] 杨莹琴, 陈慧娟.  微波法制备膨润土负载N/Fe共掺杂TiO2光催化剂 . 信阳师范学院学报(自然科学版), 2013, 26(2): 276-278.
    [14] 王雪静, 胡林峰.  纳米TiO2的离子-水混合热法合成及其光催化性能 . 信阳师范学院学报(自然科学版), 2012, 25(2): 218-221.
    [15] 牛明改, 陈来成, 翟秋阁.  海藻酸钠负载Ru掺杂TiO2太阳光催化降解染料废水 . 信阳师范学院学报(自然科学版), 2012, 25(3): 367-369.
    [16] 方林霞, 王玲玲, 余萌, 井强山.  制备方法对Ti0.8Zr0.2O2/沸石结构及光催化性能的影响 . 信阳师范学院学报(自然科学版), 2012, 25(4): 508-511.
    [17] 雷建, 陈华军;, 施万胜.  纳米Bi2O3/TiO2光催化剂的制备及光催化活性评价 . 信阳师范学院学报(自然科学版), 2010, 23(4): 562-565.
    [18] 殷好勇, 汪玲, 聂秋林, 袁求理, 徐铸德.  TiO_2纳米管的制备及其电化学储锂性能 . 信阳师范学院学报(自然科学版), 2009, 22(3): 431-434.
    [19] 董抒华, 刘俊成.  TiO_2/SiO_2:Zn复合薄膜及其光催化活性研究 . 信阳师范学院学报(自然科学版), 2009, 22(1): 88-91.
    [20] 汪玲, 阮琼, 邵琼, 兰尧中.  纳米TiO_2的制备及其在环境净化方面的应用 . 信阳师范学院学报(自然科学版), 2003, 16(3): 357-362.
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  7
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-09-06

二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展

doi: 10.3969/j.issn.1003-0972.2021.01.027
    基金项目:

    国家自然科学基金项目(21902140);河南省科技计划项目(192102210005);信阳师范学院“南湖学者奖励计划”青年项目

    作者简介:

    刘小刚(1986-),男,甘肃平凉人,讲师,博士,硕士生导师,主要从事能源与环境催化材料的设计及光电化学性能优化等研究.

    通讯作者: 刘小刚, lxg133298@163.com
  • 中图分类号: O643.36;O644.1

摘要: 活性氧物种(Reactive Oxygen Specie,ROS)在光催化反应中起着非常重要的作用.以二氧化钛(TiO2)为例,利用49篇文献简要综述了其在光催化反应过程中几种典型ROS,如:超氧自由基(·O-2)、羟基自由基(·OH)、单线态氧(1O2)和过氧化氢(H2O2)的产生过程,列举了ROS的一般检测方法,对ROS在光催化反应研究中存在的问题和发展趋势给出了建议和展望.

English Abstract

刘小刚, 李梦, 杜贵如, 董雨菡, 鲁凯欣, 刘醒龙, 陈高燕, 杜兰馨. 二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展[J]. 信阳师范学院学报(自然科学版), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
引用本文: 刘小刚, 李梦, 杜贵如, 董雨菡, 鲁凯欣, 刘醒龙, 陈高燕, 杜兰馨. 二氧化钛光催化反应过程中几种典型活性氧物种的形成与检测研究进展[J]. 信阳师范学院学报(自然科学版), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
LIU Xiaogang, LI Meng, DU Guiru, DONG Yuhan, LU Kaixin, LIU Xinglong, CHEN Gaoyan, DU Lanxin. Research Progress on Generation Mechanism and Detection Methods of Reactive Oxygen Species During Photocatalytic Reaction Based on TiO2[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
Citation: LIU Xiaogang, LI Meng, DU Guiru, DONG Yuhan, LU Kaixin, LIU Xinglong, CHEN Gaoyan, DU Lanxin. Research Progress on Generation Mechanism and Detection Methods of Reactive Oxygen Species During Photocatalytic Reaction Based on TiO2[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(1): 166-172. doi: 10.3969/j.issn.1003-0972.2021.01.027
参考文献 (49)

目录

    /

    返回文章
    返回

    本系统由 北京仁和汇智信息技术有限公司 开发    百度统计