[1]
|
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38. |
[2]
|
LIAO G, GONG Y, ZHANG L, et al. Semiconductor polymeric graphitic carbon nitride photocatalysts:The"holy grail"for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy&Environmental Science, 2019, 12(7):2080-2147. |
[3]
|
LIU X, DONG G, LI S, et al. Direct observation of charge separation on anatase TiO2 crystals with selectively etched 001 facets[J]. Journal of the American Chemical Society, 2016, 138(9):2917-2920. |
[4]
|
BALAJKA J, HINES M A, DEBENEDETTI W J, et al. High-affinity adsorption leads to molecularly ordered interfaces on TiO (2) in air and solution[J]. Science, 2018, 361(6404):786-789. |
[5]
|
PARK J Y. How titanium dioxide cleans itself[J]. Science, 2018, 361(6404):753. |
[6]
|
WANG L, ZHANG X, YU X, et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity[J]. Advanced Materials, 2019, 31(33):1901965. |
[7]
|
MA H, ZHAO L, GUO L, et al. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV[J]. Journal of Hazardous Materials, 2019, 369:719-726. |
[8]
|
HUANG S, YUANGUO X U, LIU Q, et al. Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts[J]. Applied Catalysis B:Environmental, 2017, 218:174-185. |
[9]
|
KANG S, ZHANG L, YIN C, et al. Fast flash frozen synthesis of holey few-layer g-C3N4 with high enhancement of photocatalytic reactive oxygen species evolution under visible light irradiation[J]. Applied Catalysis B-Environmental, 2017, 211:266-274. |
[10]
|
CHEN P, WANG F, CHEN Z, et al. Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO2/carbon dots photocatalyst:the significant roles of reactive oxygen species[J]. Applied Catalysis B:Environmental, 2017, 204:250-259. |
[11]
|
刘小刚,陈苗苗,吴振威,等.具有不同{001}晶面暴露分数的纳米TiO2制备及其光催化性能研究[J].信阳师范学院学报(自然科学版), 2019, 32(2):298-301. LIU Xiaogang, CHEN Miaomiao, WU Zhenwei, et al. Preparation and photocatalytic activity study of nano-TiO2 with different exposed percentage of{001}facets[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(2):298-301. |
[12]
|
孙振亚,李玲芝,杨红刚,等.二氧化钛光催化还原银离子探针反应的研究[J].信阳师范学院学报(自然科学版), 2016, 29(1):79-83. SUN Zhenya, LI Lingzhi, YANG Honggang, et al. Photocatalytic reduction of silver ion probe on nano titanium dioxide[J]. Journal of Xinyang Normal University (Natural Science Edition), 2016, 29(1):79-83. |
[13]
|
杨莹琴,陈庆亮,王庆之.膨润土负载N/Ag共掺杂TiO2光催化剂的制备及光催化降解性能[J].信阳师范学院学报(自然科学版), 2019, 32(4):631-634. YANG Yingqin, CHEN Qingliang, WANG Qingzhi. Preparation and photocatalytic degradation effect of bentonite supported N/Ag Co-doped TiO2 photocatalysts[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(4):631-634. |
[14]
|
CHEN Chen, ZHU Xiaorong, WEN Xiaojian, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry, 2020, 12(8):717-724. |
[15]
|
PARK J, LIM J, PARK Y, et al. In-situ-generated reactive oxygen species in pre-charged titania and tungsten trioxide composite catalyst membrane filters:application to As (III) oxidation in the absence of irradiation[J]. Environmental Science and Technology, 2020, 54(15):9601-9608. |
[16]
|
NONELL S, FLORS C. Singlet oxygen:Applications in biosciences and nanosciences[M]. Cambridge:Royal Society of Chemistry,2016. |
[17]
|
BARD A J, ROGER P, JOSEPH J. Standard potentials in aqueous solution[M]. New York:M Dekker, 1985. |
[18]
|
BIELSKI B H J, CABELLI D E, ARUDI R L, et al. Reactivity of HO2/O-2 radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1985, 14(4):1041-1100. |
[19]
|
GONG Y, ZHOU M, ANDREWS L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes[J]. Chemical Reviews, 2009, 109(12):6765-6808. |
[20]
|
SHAO M, LIU P, ADZIC R R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. Journal of the American Chemical Society, 2006, 128(23):7408-7409. |
[21]
|
KAKUMA Y, NOSAKA A Y, NOSAKA Y. Difference in TiO2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(28):18691-18698. |
[22]
|
KOMAGUCHI K, MARUOKA T, NAKANO H, et al. Electron-transfer reaction of oxygen species on TiO2 nanoparticles induced by sub-band-gap illumination[J]. The Journal of Physical Chemistry C, 2010, 114(2):1240-1245. |
[23]
|
CARTER E, CARLEY A F, MURPHY D M. Evidence for O2-radical stabilization at surface oxygen vacancies on polycrystalline TiO2[J]. The Journal of Physical Chemistry C, 2007, 111(28):10630-10638. |
[24]
|
LI Y, ZHANG W, NIU J, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano, 2012, 6(6):5164-5173. |
[25]
|
HIRAKAWA T, NOSAKA Y. Selective production of superoxideions and hydrogen peroxide over nitrogen-and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems[J]. The Journal of Physical Chemistry C, 2008, 112(40):15818-15823. |
[26]
|
ISHIBASHI K, FUJISHIMA A, WATANABE T, et al. Generation and deactivation processes of superoxide formed on TiO2 film illuminated by very weak UV light in air or water[J]. The Journal of Physical Chemistry B, 2000, 104(20):4934-4938. |
[27]
|
SAITO H, NOSAKA Y. Mechanism of singlet oxygen generation invisible-light-induced photocatalysis of gold-nanoparticle-deposited titanium dioxide[J]. The Journal of Physical Chemistry C, 2014, 118(29):15656-15663. |
[28]
|
BAUR E, NEUWEILER C. Photolytic formation of hydrogen peroxide[J]. Helvetica Chimica Acta, 1927, 10:901-907. |
[29]
|
SHIRAISHI Y, KANAZAWA S, TSUKAMOTO D, et al. Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water[J]. ACS Catalysis, 2013, 3(10):2222-2227. |
[30]
|
NAKAMURA R, NAKATO Y. Primary intermediates of oxygen photoevolution reaction on TiO2(rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements[J]. Journal of the American Chemical Society, 2004, 126(4):1290-1298. |
[31]
|
SAHEL K, ELSELLAMI L, MIRALI I, et al. Hydrogen peroxide and photocatalysis[J]. Applied Catalysis B:Environmental, 2016, 188:106-112. |
[32]
|
SCHWEITZER C, SCHMIDT R. Physical mechanisms of generation and deactivation of singlet oxygen[J]. Chemical Reviews, 2003, 103(5):1685-1757. |
[33]
|
ADAM W, KAZAKOV D V, KAZAKOV V P. Singlet-oxygen chemiluminescence in peroxide reactions[J]. Chemical Reviews, 2005, 105(9):3371-3387. |
[34]
|
HARADA Y, SUZUKI K, HASHIMOTO M, et al. Chemiluminescence from singlet oxygen that was detected at two wavelengths and effects of biomolecules on it[J]. Talanta, 2009, 77(3):1223-1227. |
[35]
|
DAIMON T, HIRAKAWA T, KITAZAWA M, et al. Formation of singlet molecular oxygen associated with the formation of superoxide radicals in aqueous suspensions of TiO2 photocatalysts[J]. Applied Catalysis A:General, 2008, 340(2):169-175. |
[36]
|
YAGI M, TAKEMOTO S, SASASE R. Measurement of concentration of singlet molecular oxygen in the gas phase by electron paramagnetic resonance[J]. Chemistry Letters, 2004, 33(2):152-153. |
[37]
|
NAKAMURA K, ISHIYAMA K, IKAI H, et al. Reevaluation of analytical methods for photogenerated singlet oxygen[J]. Journal of Clinical Biochemistry and Nutrition, 2011, 49(2):87-95. |
[38]
|
DI CREDICO B, BELLOBONO I R, D'ARIENZO M, et al. Efficacy of the reactive oxygen species generated by immobilized TiO2 in the photocatalytic degradation of diclofenac[J]. International Journal of Photoenergy, 2015, 2015:1-13. |
[39]
|
FENOGLIO I, PONTI J, ALLOA E, et al. Singlet oxygen plays a key role in the toxicity and DNA damage caused by nanometric TiO2 in human keratinocytes[J]. Nanoscale, 2013, 5(14):6567-6576. |
[40]
|
SANTAELLA C, ALLAINMAT B, SIMONET F, et al. Aged TiO2-based nanocomposite used in sunscreens produces singlet oxygen under long-wave UV and sensitizes escherichia coli to cadmium[J]. Environmental Science&Technology, 2014, 48(9):5245-5253. |
[41]
|
DIMITRIJEVIC N M, ROZHKOVA E, RAJH T. Dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species[J]. Journal of the American Chemical Society, 2009, 131(8):2893-2899. |
[42]
|
NAKABAYASHI Y, NOSAKA Y. The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO2 single crystals[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(45):30570-30576. |
[43]
|
方艳芬,黄应平,陈和春,等.二氧化钛光催化体系中的羟基自由基的测定[J].分析化学, 2006, 34(增1):83-86. FANG Yanfen, HUANG Yingping, CHEN Hechun, et al. Determination hydroxyl radical in titania photocatalytic system[J]. Chinese Journal of Analytical Chemistry, 2006, 34
(S1):83-86. |
[44]
|
NODA H, OIKAWA K, OHYA-NISHIGUCHI H, et al. Efficient hydroxyl radical production and their reactivity with ethanol in the presence of photoexcited semiconductors[J]. Bulletin of the Chemical Society of Japan, 1994, 67(8):2031-2037. |
[45]
|
ZHANG J, NOSAKA Y. Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types[J]. The Journal of Physical Chemistry C, 2014, 118(20):10824-10832. |
[46]
|
LIAO H, REITBERGERT. Generation of free OH aq radicals by black light illumination of degussa (evonik) P25 TiO2 aqueous suspensions[J]. Catalysts, 2013, 3(2):418-443. |
[47]
|
LIU C, YAN Y, ZHANG X, et al. Regulating the pro-and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of monascus pigments[J]. Nanoscale, 2020, 12(5):3068-3075. |
[48]
|
XU Q, WANG Y, CHI M, et al. Porous polymer-titanium dioxide/copper composite with improved photocatalytic activity toward degradation of organic pollutants in wastewater:fabrication and characterization as well as photocatalytic activity evaluation[J]. Catalysts, 2020, 10:310. |
[49]
|
MENG F, GUO L, ZOU H, et al. Mechanism study on TiO2 inducing O2-and OH radicals in O3/H2O2 system for high-efficiency NO oxidation[J]. Journal of Hazardous Materials, 2020, 399:123033. |