[1]
|
ZHANG W, ZHANG P, ZHANG S, et al. Label-free and real-time monitoring of trypsin activity in living cells by quantum-dot-based fluorescent sensors[J]. Analytical Methods, 2014, 6(8):2499-2505. |
[2]
|
FERNANDEZ-IGLESIAS N, BETTMER J. Synthesis, purification and mass spectrometric characterisation of a fluorescent Au9@BSA nanocluster and its enzymatic digestion by trypsin[J]. Nanoscale, 2014, 6(2):716-721. |
[3]
|
OU L J, LI X Y, LI L J, et al. A sensitive assay for trypsin using poly (thymine)-templated copper nanoparticles as fluorescent probes[J]. Analyst, 2015, 140(6):1871-1875. |
[4]
|
SEIA M A, STEGE P W, PEREIRA S V, et al. Silica nanoparticle-based microfluidic immunosensor with laser-induced fluorescence detection for the quantification of immunoreactive trypsin[J]. Analytical Biochemistry, 2014, 463:31-37. |
[5]
|
XUE W, ZHANG G, ZHANG D. A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles[J]. Analyst, 2011, 136(15):3136-3141. |
[6]
|
LIANG R P, TIAN X C, QIU P, et al. Multiplexed electrochemical detection of trypsin and chymotrypsin based on distinguishable signal nanoprobes[J]. Analytical Chemistry, 2014, 86(18):9256-9263. |
[7]
|
CHEN L, FU X, LI J. Ultrasensitive surface-enhanced raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles:An optical sensing platform toward proteases[J]. Nanoscale, 2013, 5(13):5905-5911. |
[8]
|
ENSAFI A A, KAZEMIFARD N, REZAEI B. A simple and rapid label-free fluorimetric biosensor for protamine detection based on glutathione-capped CdTe quantum dots aggregation[J]. Biosensors&Bioelectronics, 2015, 71:243-248. |
[9]
|
CHEN H, FANG A, ZHANG Y, et al. Silver triangular nanoplates as an high efficiently FRET donor-acceptor of upconversion nanoparticles for ultrasensitive"turn on-off"protamine and trypsin sensor[J]. Talanta, 2017, 174:148-155. |
[10]
|
WANG H B, LI Y, BAI H Y, et al. DNA-templated Au nanoclusters and MnO2 sheets:A label-free and universal fluorescence biosensing platform[J]. Sensors and Actuators B:Chemical, 2018, 259:204-210. |
[11]
|
HU L, HAN S, PARVEEN S, et al. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters[J]. Biosensors&Bioelectronics, 2012, 32(1):297-299. |
[12]
|
王海波,白宏宇,毛安丽,等.基于谷胱甘肽稳定铜纳米簇的荧光传感方法灵敏检测汞离子[J].信阳师范学院学报(自然科学版), 2019, 32(4):600-603. WANG Haibo, BAI Hongyu, MAO Anli, et al. Glutathione stabilized copper nanoclusters based fluorescent method for the sensitive detection of Hg2+ ion[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(4):600-603. |
[13]
|
WANG H B, BAI H Y, DONG G L, et al. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching:A sensitive fluorescent biosensing platform for DNA detection[J]. Nanoscale Advances, 2019, 1(4):1482-1488. |
[14]
|
王海波,董高丽,白宏宇,等.基于BSA模板荧光铜纳米簇的生物传感方法灵敏检测四环素[J].信阳师范学院学报(自然科学版), 2018, 31(4):632-635. WANG Haibo, DONG Gaoli, BAI Hongyu, et al. Fluorescence sensing strategy for sensitive detection of tetracyclines based on bovine serum albumin templated copper nanoclusters[J]. Journal of Xinyang Normal University (Natural Science Edition), 2018, 31(4):632-635. |