一类具有标准发生率和总人口变化的SIRS模型的全局稳定性分析

Global Stability of a Kind of SIRS Model with Standard Incidence Rate and Nonconstant Total Population

  • 摘要: 考虑总人口变化且康复个体不具终身免疫的情况,建立了一类具有标准发生率的SIRS传染病模型.应用更新方程得到了模型的基本再生数R0.通过构造Lyapunov函数证明平了衡点的全局稳定性.结果显示:当R0<1时,无病平衡点是全局渐近稳定的;当R0>1且失去免疫的速率(δ)充分大时,地方病平衡点是全局渐近稳定的.

     

    Abstract: Considering the case in which the total population is nonconstant and the lifelong immunity of population is absent, a kind of SIRS model with standard incidence is proposed. The basic reproduction number R0 is obtained by a renewal equation. Moreover, the global stability of equilibria is proved by a suitable Lyapunov function. The results show that if R0<1, then the disease-free equilibrium is globally asymptotically stable; if R0>1 and the loss rate of immunity is large enough, then the endemic equilibrium is globally stable.

     

/

返回文章
返回