[1]
|
YANG X F, WANG A, QIAO B, et al. Single-atom catalysts:A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8):1740-1748. |
[2]
|
KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073):1209-1212. |
[3]
|
LUCCI F R, LIU J, MARCINKOWSKI M D, et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nature Communications, 2015, 6:8550. |
[4]
|
SHAN J, LI M, ALLARD L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts[J]. Nature, 2017, 551(7682):605-608. |
[5]
|
KWON Y, KIM T Y, KWON G, et al. Selective activation of methane on single-atom catalyst of Rhodium dispersed on zirconia for direct conversion[J]. Journal of the Chemical Society, 2017, 139(48):17694-17699. |
[6]
|
JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295):150-154. |
[7]
|
NIE L, MEI D, XIONG H, et al. Activation of surface lattice Oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation[J]. Science, 2017, 358(6369):1419-1423. |
[8]
|
WANG A, LI J, ZHANG T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018, 2:65-81. |
[9]
|
KOKALJ A, BONINI N, SBRACCIA C, et al. Engineering the reactivity of metal catalysts:A model study of methane dehydrogenation on Rh(111)[J]. Journal of the American Chemical Society, 2004, 126(51):16732-16733. |
[10]
|
WANG Y Q. LYU C Q,WANG G C. Chemisorbed oxygen atom on the activation of C-H bond in methane:A Rh model study[J]. RSC Advances, 2015, 5(81):66221-66230. |
[11]
|
WANG Y Q, YAN L F, WANG G C. Oxygen-assisted water partial dissociation on copper:A model study[J]. Phys Chem Chem Phys,2015, 17(12):8231-8238. |
[12]
|
FRATESI G, DE GIRONCOLI S. Analysis of methane-to-methanol conversion on clean and defective Rh surfaces[J]. Journal of Chemical Physics, 2006, 125(4):201-243. |
[13]
|
FU Q, LUO Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation[J]. ACS Catalysis, 2013, 3(6):1245-1252. |
[14]
|
YANG K, YANG B. Identification of the active and selective sites over a single Pt atom-alloyed Cu catalyst for the hydrogenation of 1,3-butadiene:A combined DFT and microkinetic modeling study[J]. J Phys Chem C, 2018, 122(20):10883-10891. |
[15]
|
LIU J C, WANG Y G, LI J. Toward rational design of oxide-supported single-atom catalysts:Atomic dispersion of gold on ceria[J]. J Soc, 2017, 139(17):6190-6199. |
[16]
|
OUYANG R, LIU J X, LI W X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. Journal of the American Chemical Society, 2013, 135(5):1760-1771. |
[17]
|
LI F Y, LI Y F, ZENG X C, et al. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study[J]. ACS Catalysis, 2015, 5(2):544-552. |
[18]
|
CAMELLONE M F, FABRIS S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts:Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms[J]. Journal of the American Chemical Society, 2009, 131(30):10473-10483. |
[19]
|
MCCUE A J, ANDERSON J A. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts[J]. Journal of Catalysis, 2015, 329:538-546. |
[20]
|
YANG K, YANG B. Surface restructuring of Cu-based single-atom alloy catalysts under reaction conditions:The essential role of adsorbates[J]. Physical Chemistry Chemical Physics, 2017, 19(27):18010-18017. |
[21]
|
KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B(Condensed Matter), 1996, 54(16):11169-11186. |
[22]
|
CHL P E B. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979. |
[23]
|
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. |
[24]
|
CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4):1746-1747. |
[25]
|
HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22):9901. |
[26]
|
STEVE P. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19. |
[27]
|
VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41):9396-9409. |
[28]
|
LLOYD A, CORNIL D, VAN DUIN A C T, et al. Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO[J]. Surface Science, 2016, 645:67-73. |
[29]
|
ARYANPOUR M, VAN DUIN A C T, KUBICKi J D. Development of a reactive force field for iron-oxyhydroxide systems[J]. The Journal of Physical Chemistry A, 2010, 114(21):6298-6307. |
[30]
|
MUELLER J E, VAN DUIN A C T,GODDARd W A. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by Nickel[J]. J Phys Chem C, 2010, 114(11):4939-4949. |
[31]
|
FANTAUZZI D, BANDLOW J, SABO L, et al. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation[J]. Phys Chem Chem Phys,2014, 16(42):23118-23133. |
[32]
|
YEON J, ADAMS H L, JUNKERMEIER C E, et al. Development of a ReaxFF force field for Cu/S/C/H and reactive MD simulations of methyl thiolate decomposition on Cu (100)[J]. The Journal of Physical Chemistry B, 2018, 122(2):888-896. |
[33]
|
SHIN Y K, GAI L, RAMAN S, et al. Development of a ReaxFF reactive force field for the Pt-Ni alloy catalyst[J]. The Journal of Physical Chemistry A, 2016, 120(41):8044-8055. |
[34]
|
DUIN A C T V, BAAS J M A, GRAAF B V D. Delft molecular mechanics:A new approach to hydrocarbon force fields[J]. J Chem Soc Faraday Trans, 1994, 90(19):2881-2895. |
[35]
|
LUCCI F R, LAWTON T J, PRONSCHINSKE A, et al. Atomic scale surface structure of Pt/Cu(111) surface alloys[J]. The Journal of Physical Chemistry C, 2014, 118(6):3015-3022. |
[36]
|
TODOROKI N, YOKOTA N, NAKAHATA S, et al. Electrochemical reduction of CO2 on Ni- and Pt-epitaxially grown Cu(111) surfaces[J]. Electrocatalysis, 2016, 7(1):97-103. |
[37]
|
YANG W Q, WANG J, QIAO Y Y, et al.Thermal stability of single atom metal catalysts:ReaxFF molecular dynamics study[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(11):2078-2082. |
[38]
|
DOKUKIN S A, KOLESNIKOV S V, SALETSKY A M. Diffusion of atomic dimers during the formation of a Pt/Cu(111) surface alloy[J]. Moscow University Physics Bulletin, 2019, 74(4):385-391. |
[39]
|
LYU C Q, LIU J H, GUO Y, et al. Selective hydrogenation of 1,3-butadiene over single Pt1/Cu(111)model catalysts:A DFT study[J]. Applied Surface Science, 2019, 466(1):946-955. |