单原子合金催化剂热稳定性的反应力场分子动力学研究

王贵昌 杨文琦 汪杰 乔园园

王贵昌, 杨文琦, 汪杰, 乔园园. 单原子合金催化剂热稳定性的反应力场分子动力学研究[J]. 信阳师范学院学报(自然科学版), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
引用本文: 王贵昌, 杨文琦, 汪杰, 乔园园. 单原子合金催化剂热稳定性的反应力场分子动力学研究[J]. 信阳师范学院学报(自然科学版), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
WANG Guichang, YANG Wenqi, WANG Jie, QIAO Yuanyuan. Reactive Force Field Model Molecular Dynamics Study on the Thermal Stability of Single Atom Alloy Catalysts[J]. Journal of Xinyang Normal University (Natural Science Edition), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
Citation: WANG Guichang, YANG Wenqi, WANG Jie, QIAO Yuanyuan. Reactive Force Field Model Molecular Dynamics Study on the Thermal Stability of Single Atom Alloy Catalysts[J]. Journal of Xinyang Normal University (Natural Science Edition), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004

单原子合金催化剂热稳定性的反应力场分子动力学研究

doi: 10.3969/j.issn.1003-0972.2020.02.004
基金项目: 

国家自然科学基金项目(2173123,21973048)

详细信息
    作者简介:

    王贵昌(1963-),男,河南新乡人,教授,博士,博士生导师,从事多相催化反应机理的理论研究.

  • 中图分类号: O643.36

Reactive Force Field Model Molecular Dynamics Study on the Thermal Stability of Single Atom Alloy Catalysts

  • 摘要: 通过反应力场(ReaxFF)模型分子动力学模拟,研究了负载模型和掺杂模型单原子催化剂(分别记为M1/Cu(111)和M1@Cu(111),M=Pt,Ni,Ag,Fe)的热稳定性.模拟结果显示:对于M1@Cu(111)掺杂模型,Pt(Ni,Fe)1@Cu(111)的稳定性远高于Ag1@Cu(111),温度大于500 K时依旧可以保持稳定.而负载模型M1/Cu(111)除了Fe1/Cu(111)以外,其余模型在100~500 K的温度范围中均无法保持稳定,单个金属原子会在Cu(111)表面迁移并相互聚集最终形成纳米颗粒.同时发现,随着温度的升高,Fe不同于其他金属单原子的烧结过程,会向亚表层扩散,进入合金体相.此外,还优化了Cu/Pt/H/O的力场参数,并研究了H2气氛对单原子催化剂(SAA)催化剂模型表面稳定性的影响,发现H2气氛的存在导致M1@Cu(111)模型稳定性降低.理论模拟结果发现M1/Cu(111)型SAA催化剂即使在低温下也不是一个很好的候选催化剂,而多数M1@Cu(111)型催化剂在较高温度下依旧可以保持稳定.
  • [1] YANG X F, WANG A, QIAO B, et al. Single-atom catalysts:A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2013, 46(8):1740-1748.
    [2] KYRIAKOU G, BOUCHER M B, JEWELL A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073):1209-1212.
    [3] LUCCI F R, LIU J, MARCINKOWSKI M D, et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nature Communications, 2015, 6:8550.
    [4] SHAN J, LI M, ALLARD L F, et al. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts[J]. Nature, 2017, 551(7682):605-608.
    [5] KWON Y, KIM T Y, KWON G, et al. Selective activation of methane on single-atom catalyst of Rhodium dispersed on zirconia for direct conversion[J]. Journal of the Chemical Society, 2017, 139(48):17694-17699.
    [6] JONES J, XIONG H, DELARIVA A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295):150-154.
    [7] NIE L, MEI D, XIONG H, et al. Activation of surface lattice Oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation[J]. Science, 2017, 358(6369):1419-1423.
    [8] WANG A, LI J, ZHANG T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry, 2018, 2:65-81.
    [9] KOKALJ A, BONINI N, SBRACCIA C, et al. Engineering the reactivity of metal catalysts:A model study of methane dehydrogenation on Rh(111)[J]. Journal of the American Chemical Society, 2004, 126(51):16732-16733.
    [10] WANG Y Q. LYU C Q,WANG G C. Chemisorbed oxygen atom on the activation of C-H bond in methane:A Rh model study[J]. RSC Advances, 2015, 5(81):66221-66230.
    [11] WANG Y Q, YAN L F, WANG G C. Oxygen-assisted water partial dissociation on copper:A model study[J]. Phys Chem Chem Phys,2015, 17(12):8231-8238.
    [12] FRATESI G, DE GIRONCOLI S. Analysis of methane-to-methanol conversion on clean and defective Rh surfaces[J]. Journal of Chemical Physics, 2006, 125(4):201-243.
    [13] FU Q, LUO Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation[J]. ACS Catalysis, 2013, 3(6):1245-1252.
    [14] YANG K, YANG B. Identification of the active and selective sites over a single Pt atom-alloyed Cu catalyst for the hydrogenation of 1,3-butadiene:A combined DFT and microkinetic modeling study[J]. J Phys Chem C, 2018, 122(20):10883-10891.
    [15] LIU J C, WANG Y G, LI J. Toward rational design of oxide-supported single-atom catalysts:Atomic dispersion of gold on ceria[J]. J Soc, 2017, 139(17):6190-6199.
    [16] OUYANG R, LIU J X, LI W X. Atomistic theory of ostwald ripening and disintegration of supported metal particles under reaction conditions[J]. Journal of the American Chemical Society, 2013, 135(5):1760-1771.
    [17] LI F Y, LI Y F, ZENG X C, et al. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study[J]. ACS Catalysis, 2015, 5(2):544-552.
    [18] CAMELLONE M F, FABRIS S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts:Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms[J]. Journal of the American Chemical Society, 2009, 131(30):10473-10483.
    [19] MCCUE A J, ANDERSON J A. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts[J]. Journal of Catalysis, 2015, 329:538-546.
    [20] YANG K, YANG B. Surface restructuring of Cu-based single-atom alloy catalysts under reaction conditions:The essential role of adsorbates[J]. Physical Chemistry Chemical Physics, 2017, 19(27):18010-18017.
    [21] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B(Condensed Matter), 1996, 54(16):11169-11186.
    [22] CHL P E B. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979.
    [23] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
    [24] CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4):1746-1747.
    [25] HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22):9901.
    [26] STEVE P. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1):1-19.
    [27] VAN DUIN A C T, DASGUPTA S, LORANT F, et al. ReaxFF:A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41):9396-9409.
    [28] LLOYD A, CORNIL D, VAN DUIN A C T, et al. Development of a ReaxFF potential for Ag/Zn/O and application to Ag deposition on ZnO[J]. Surface Science, 2016, 645:67-73.
    [29] ARYANPOUR M, VAN DUIN A C T, KUBICKi J D. Development of a reactive force field for iron-oxyhydroxide systems[J]. The Journal of Physical Chemistry A, 2010, 114(21):6298-6307.
    [30] MUELLER J E, VAN DUIN A C T,GODDARd W A. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by Nickel[J]. J Phys Chem C, 2010, 114(11):4939-4949.
    [31] FANTAUZZI D, BANDLOW J, SABO L, et al. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation[J]. Phys Chem Chem Phys,2014, 16(42):23118-23133.
    [32] YEON J, ADAMS H L, JUNKERMEIER C E, et al. Development of a ReaxFF force field for Cu/S/C/H and reactive MD simulations of methyl thiolate decomposition on Cu (100)[J]. The Journal of Physical Chemistry B, 2018, 122(2):888-896.
    [33] SHIN Y K, GAI L, RAMAN S, et al. Development of a ReaxFF reactive force field for the Pt-Ni alloy catalyst[J]. The Journal of Physical Chemistry A, 2016, 120(41):8044-8055.
    [34] DUIN A C T V, BAAS J M A, GRAAF B V D. Delft molecular mechanics:A new approach to hydrocarbon force fields[J]. J Chem Soc Faraday Trans, 1994, 90(19):2881-2895.
    [35] LUCCI F R, LAWTON T J, PRONSCHINSKE A, et al. Atomic scale surface structure of Pt/Cu(111) surface alloys[J]. The Journal of Physical Chemistry C, 2014, 118(6):3015-3022.
    [36] TODOROKI N, YOKOTA N, NAKAHATA S, et al. Electrochemical reduction of CO2 on Ni- and Pt-epitaxially grown Cu(111) surfaces[J]. Electrocatalysis, 2016, 7(1):97-103.
    [37] YANG W Q, WANG J, QIAO Y Y, et al.Thermal stability of single atom metal catalysts:ReaxFF molecular dynamics study[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(11):2078-2082.
    [38] DOKUKIN S A, KOLESNIKOV S V, SALETSKY A M. Diffusion of atomic dimers during the formation of a Pt/Cu(111) surface alloy[J]. Moscow University Physics Bulletin, 2019, 74(4):385-391.
    [39] LYU C Q, LIU J H, GUO Y, et al. Selective hydrogenation of 1,3-butadiene over single Pt1/Cu(111)model catalysts:A DFT study[J]. Applied Surface Science, 2019, 466(1):946-955.
  • [1] 唐甜, 李晓冬, 甘永莹, 祝光湖.  一类综合脉冲控制系统的动力学分析 . 信阳师范学院学报(自然科学版), 2020, 33(1): 21-24. doi: 10.3969/j.issn.1003-0972.2020.01.004
    [2] 马慧莲, 郭尊光.  一类具有时滞和CTL免疫反应的HIV-1感染模型的稳定性和Hopf分支 . 信阳师范学院学报(自然科学版), 2019, 32(1): 5-10. doi: 10.3969/j.issn.1003-0972.2019.01.002
    [3] 王娟, 何俊杰.  一类时滞虫媒传染病模型的稳定性分析 . 信阳师范学院学报(自然科学版), 2018, 31(3): 352-356. doi: 10.3969/j.issn.1003-0972.2018.03.003
    [4] 裴强.  基于氢键的超分子自组装:缔合方式及稳定性 . 信阳师范学院学报(自然科学版), 2018, 31(1): 160-167. doi: 10.3969/j.issn.1003-0972.2018.01.031
    [5] 郭树敏, 李学志.  具有常数输入的H7N9禽流感动力学模型分析 . 信阳师范学院学报(自然科学版), 2017, 30(1): 13-16. doi: 10.3969/j.issn.1003-0972.2017.01.004
    [6] 王雪艳, 王士革, 王莉, 万婷婷, 李卢燕.  双向扣件式钢管模板支撑体系稳定性研究 . 信阳师范学院学报(自然科学版), 2016, 29(4): 640-644. doi: 10.3969/j.issn.1003-0972.2016.04.035
    [7] 苏春华, 沈雪梅.  一类脉冲随机微分系统的几乎必然指数稳定性 . 信阳师范学院学报(自然科学版), 2014, 27(3): 323-327. doi: 10.3969/j.issn.1003-0972.2014.03.004
    [8] 郑丽丽, 王娟.  一类具有非线性发生率的病毒动力学模型分析(英文) . 信阳师范学院学报(自然科学版), 2013, 26(4): 481-484. doi: 10.3969/j.issn.1003-0972.2013.04.004
    [9] 陶有德, 于景元, 朱广田.  一类可修复计算机系统的稳定性和可靠性 . 信阳师范学院学报(自然科学版), 2011, 24(1): 18-21.
    [10] 周增国, 薛杰, 孟凡强, 李松.  基于ANSYS的大跨度拱桥拱肋吊装过程稳定性分析 . 信阳师范学院学报(自然科学版), 2010, 23(2): 300-303.
    [11] 王军霞, 李连兵.  中立型脉冲微分方程解的存在性及稳定性 . 信阳师范学院学报(自然科学版), 2010, 23(4): 488-491.
    [12] 赵明, 程荣福.  具反馈控制的阶段结构种群模型的稳定性 . 信阳师范学院学报(自然科学版), 2009, 22(1): 14-17.
    [13] 徐建国.  带柔性附件的充液飞行器姿态动力学与控制(英文) . 信阳师范学院学报(自然科学版), 2008, 21(1): 21-23.
    [14] 刘百超, 胡雪惠, 马定洋, 王禹.  记忆合金相变的计算机模拟 . 信阳师范学院学报(自然科学版), 2007, 20(4): 505-507.
    [15] 向中义, 郭红建, 赵中.  一类带有脉冲输入的捕食者-食饵恒化器模型的动力学性质(英文) . 信阳师范学院学报(自然科学版), 2006, 19(2): 132-134.
    [16] 黄永东, 程正兴, 朱凤娟.  Gabor框架的稳定性 . 信阳师范学院学报(自然科学版), 2005, 18(2): 128-130.
    [17] 王卓芝, 李学志.  一类年龄依赖的流行病模型的动力学行为(英文) . 信阳师范学院学报(自然科学版), 2003, 16(3): 260-269.
    [18] 高复兴, 罗伟, 李根强, 朱海广.  草莓红色素的提取及稳定性研究 . 信阳师范学院学报(自然科学版), 2001, 14(4): 448-449.
    [19] 刘娟, 冯良东, 黄行九, 蔡乃才.  新型复合电极及其光催化反应的研究 . 信阳师范学院学报(自然科学版), 2001, 14(4): 414-417.
    [20] 赵桦萍, 李莉, 梁玉珍.  铬黑T的三乙醇胺—无水乙醇溶液作为络合滴定指示剂稳定性的研究 . 信阳师范学院学报(自然科学版), 1999, 12(2): 183-184.
  • 加载中
计量
  • 文章访问数:  2954
  • HTML全文浏览量:  1
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-02-25
  • 刊出日期:  2020-04-10

单原子合金催化剂热稳定性的反应力场分子动力学研究

doi: 10.3969/j.issn.1003-0972.2020.02.004
    基金项目:

    国家自然科学基金项目(2173123,21973048)

    作者简介:

    王贵昌(1963-),男,河南新乡人,教授,博士,博士生导师,从事多相催化反应机理的理论研究.

  • 中图分类号: O643.36

摘要: 通过反应力场(ReaxFF)模型分子动力学模拟,研究了负载模型和掺杂模型单原子催化剂(分别记为M1/Cu(111)和M1@Cu(111),M=Pt,Ni,Ag,Fe)的热稳定性.模拟结果显示:对于M1@Cu(111)掺杂模型,Pt(Ni,Fe)1@Cu(111)的稳定性远高于Ag1@Cu(111),温度大于500 K时依旧可以保持稳定.而负载模型M1/Cu(111)除了Fe1/Cu(111)以外,其余模型在100~500 K的温度范围中均无法保持稳定,单个金属原子会在Cu(111)表面迁移并相互聚集最终形成纳米颗粒.同时发现,随着温度的升高,Fe不同于其他金属单原子的烧结过程,会向亚表层扩散,进入合金体相.此外,还优化了Cu/Pt/H/O的力场参数,并研究了H2气氛对单原子催化剂(SAA)催化剂模型表面稳定性的影响,发现H2气氛的存在导致M1@Cu(111)模型稳定性降低.理论模拟结果发现M1/Cu(111)型SAA催化剂即使在低温下也不是一个很好的候选催化剂,而多数M1@Cu(111)型催化剂在较高温度下依旧可以保持稳定.

English Abstract

王贵昌, 杨文琦, 汪杰, 乔园园. 单原子合金催化剂热稳定性的反应力场分子动力学研究[J]. 信阳师范学院学报(自然科学版), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
引用本文: 王贵昌, 杨文琦, 汪杰, 乔园园. 单原子合金催化剂热稳定性的反应力场分子动力学研究[J]. 信阳师范学院学报(自然科学版), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
WANG Guichang, YANG Wenqi, WANG Jie, QIAO Yuanyuan. Reactive Force Field Model Molecular Dynamics Study on the Thermal Stability of Single Atom Alloy Catalysts[J]. Journal of Xinyang Normal University (Natural Science Edition), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
Citation: WANG Guichang, YANG Wenqi, WANG Jie, QIAO Yuanyuan. Reactive Force Field Model Molecular Dynamics Study on the Thermal Stability of Single Atom Alloy Catalysts[J]. Journal of Xinyang Normal University (Natural Science Edition), 2020, 33(2): 191-197. doi: 10.3969/j.issn.1003-0972.2020.02.004
参考文献 (39)

目录

    /

    返回文章
    返回

    本系统由 北京仁和汇智信息技术有限公司 开发    百度统计