[1]
|
陈万青,张思维,曾红梅,等.中国2010年恶性肿瘤发病与死亡.中国肿瘤,2014,23(1):1-10.
CHEN Wanqing, ZHANG Siwei, ZENG Hongmei, et al. Report of cancer incidence and mortality in China, 2010. China Cancer, 2014, 23(1):1-10. |
[2]
|
WANG Shixiang, JIA Mingming, HE Zaoke, et al. APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene, 2018, 37(29):3924-3936. |
[3]
|
黄佩,蔺小林,李建全,等.一类肿瘤-免疫系统动力学性态的全局分析.高校应用数学学报A辑,2019, 34(2):181-189.
HUANG Pei, LIN Xiaolin, LI Jianquan, et al. Global analysis of a class of tumor-immune system dynamics. Journal of Applied Mathematics of Colleges and Universities A, 2019, 34(2):181-189. |
[4]
|
|
[5]
|
STEPANOVA N V. Course of the immune reaction during the development of a malignant tumor. Biophysics, 1980, 24:917-923. |
[6]
|
DE VLADAR H P, GONZÁLEZ J A. Dynamic response of cancer under the influence of immunological activity and therapy. Journal of Theoretical Biology, 2004, 227(3):335-348. |
[7]
|
D'ONOFRIO A. A general framework for modeling tumor-immune system competition and immunotherapy:Mathematical analysis and biomedical inferences. Physica D:Nonlinear Phenomena, 2005, 208(3/4):220-235. |
[8]
|
NORTON L. A Gompertzian model of human breast cancer growth. Cancer Research, 1988, 48(24 Pt 1):7067-7071. |
[9]
|
LEDZEWICZ U, NAGHNAEIAN M, SCHÄTTLER H. Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics. Journal of Mathematical Biology, 2012, 64(3):557-577. |
[10]
|
SHELLER B, D'ALESSANDRO D. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences and Engineering, 2015, 12(5):1037-1053. |
[11]
|
马知恩,周义仓.常微分方程定性与稳定性方法.北京:科学出版社,2001:92-93.MA Zhien, ZHOU Yicang. Qualitative and stability methods for ordinary differential equations. Beijing:Science Press, 2001:92
-93. |
[12]
|
张芷芬,丁同仁,黄文灶,等.微分方程定性理论.北京:科学出版社,2003:130-136.ZHANG Zhifen, DING Tongren, HUANG Wenzao, et al. Qualitative theory of differential equations. Beijing:Science Press, 2003:130
-136. |