植物抗寒机理研究进展

周棋赢 韩月华 潘娟娟 袁红雨 李先文 秦慕雪 彭波 祝悦

引用本文: 周棋赢, 韩月华, 潘娟娟, 袁红雨, 李先文, 秦慕雪, 彭波, 祝悦. 植物抗寒机理研究进展[J]. 信阳师范学院学报(自然科学版), 2019, 32(3): 511-516.   doi: 10.3969/j.issn.1003-0972.2019.03.031 shu
Citation:  ZHOU Qiying, HAN Yuehua, PAN Juanjuan, YUAN Hongyu, LI Xianwen, QIN Muxue, PENG Bo and ZHU Yue. Research Progress in Plant Cold Resistance Mechanism[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 511-516.   doi: 10.3969/j.issn.1003-0972.2019.03.031 shu

植物抗寒机理研究进展

    作者简介: 周棋赢(1984-),男,河南商城人,讲师,博士,主要从事植物逆境生理学研究.;
  • 基金项目: 国家自然科学基金项目(U1404319,31270727,U1604110);河南省科技计划项目(182102110449);南湖青年学者奖励计划项目(2016060);安徽省研究人员科研基金项目(2017B190)

  • 中图分类号: Q494

摘要: 低温寒害是影响农作物分布、产量和品质的主要胁迫因子.植物抗寒机理研究是比较活跃和进展很快的领域.从植物抗寒的生理生化基础、植物对低温的信号感知、低温信号在植物中的传递及植物冷反应基因的表达调控等四个方面对目前植物抗寒机理的相关研究进行了综述,并对植物抗寒研究在农业生产中的应用进行了展望.

English

    1. [1]

      王维香.植物低温胁迫适应性应答综述[J].湖北农业科学, 2009, 48(1):227-232.
      WANG W X. Adaptive responses of plant on low-temperature stress[J]. Hubei Agricultural Sciences, 2009, 48(1):227-232.

    2. [2]

      GUSTA L V, WISNIEWSKI M. Understanding plant cold hardiness:an opinion[J]. Physiologia Plantarum, 2013, 147:4-14.

    3. [3]

      CHEN X, ZHANG J, LIU Q, et al. Transcriptome sequencing and identification of cold tolerance genes in HardyCorylus species (C. heterophyllaFisch) floral buds[J]. PloS One, 2014, 9(9):e108604.

    4. [4]

      徐呈祥. 提高植物抗寒性的机理研究进展[J]. 生态学报, 2012, 32(24):7966-7980.
      XU C X. Research progress on the mechanism of improving plant cold hardiness[J]. Acta Ecologica Sinica, 2012, 32(24):7966-7980.

    5. [5]

      WANG H, DATLA R, GEORGES F, et al. Promoters fromkin1 and cor6.6, two homologous arabidopsis thaliana genes:transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration[J]. Plant Molecular Biology, 1995, 28(4):605-617.

    6. [6]

      BREMER A, KENT B, HAUSS T, et al. Intrinsically disordered stress protein COR15A resides at the membrane surface during dehydration[J]. Biophysical Journal, 2017, 113:572-579.

    7. [7]

      HEIDARVAND L, AMIRI R M. What happens in plant molecular responses to cold stress?[J]. Acta Physiol Plant, 2010, 32:419-431.

    8. [8]

      陈丽文, 王艳平. 低温对两种油茶的生理生态效应[J]. 信阳师范学院学报(自然科学版),2016, 29(4):534-536. CHEN L W, WANG Y P. The physiological and ecological effect on two speciesCamellia oleiferainduced by low temperature[J]. Journal of Xinyang Normal University (Natural Science Edition),2016, 29(4):534-536.

    9. [9]

      CRAIG W,LENZI P,SCOTTI N,et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Research, 2008, 17:769-782.

    10. [10]

      李先文, 谢素霞, 李勋. 植物寒冻抗性分子机理研究进展[J]. 信阳师范学院学报(自然科学版), 2011, 24(2):272-277. LI X W, XIE S X, LI S. Advances in researches on frost-resistance mechanisms of plants[J]. Journal of Xinyang Normal University (Natural Science Edition),2011, 24(2):272-277.

    11. [11]

      DUMAN J G, WISNIEWSKI M J. The use of antifreeze proteins for frost protection in sensitive crop plants[J]. Environmental and Experimental Botany, 2014, 106:60-69.

    12. [12]

      蒋家月, 金凤玲, 王芸芳, 等. 冬季自然低温胁迫对茶树抗寒生理指标的影响[J]. 安徽农业大学学报, 2012, 39(3):394-396.
      JIANG J Y, JIN F L, WANG Y F, et al. Effects of winter low temperature stress on cold resistant physiological indices ofCamellia sinensis(L.)O. Kuntze[J]. Journal of Anhui Agricultural University, 2012, 39(3):394-396.

    13. [13]

      赵秀琴, 张婷, 王文生, 等. 水稻低温胁迫不同时间的代谢物谱图分析[J]. 作物学报, 2013, 39(4):720-726.
      ZHAO X Q, ZHANG T, WANG W S, et al. Time-course metabolic profiling in rice under low temperature treatment[J].Acta Agronomica Sinica, 2013, 39(4):720-726.

    14. [14]

      BAN Q, WANG X, PAN C, et al. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants[J]. PloS One, 2017, 12(12):e0188514

    15. [15]

      MA Y, ZHANG Y, LU J, et al. Roles of plant soluble sugars and their responses to plant cold stress[J]. African Journal of Biotechnology, 2009, 8:2004-2010.

    16. [16]

      PASTORCZYK M, GIELWANOWSKA I, LATHUTA L B. Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling[J]. Acta Physiologiae Plantarum, 2014, 36:1771-1780.

    17. [17]

      MA Y, DAI X, XU Y, ET al.COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160:1209-1221.

    18. [18]

      SUZUKI I, LOS D A, MURATA N. Perception and transduction of low-temperature signals to induce desaturation of fatty acids[J]. Biochemical Society Transactions, 2000, 28:628-630.

    19. [19]

      AGUILAR P S, HERNANDEZ-ARRIAGA A M, CYBULSKI L E, et al. Molecular basis of thermosensing:a two-component signal transduction thermometer inBacillus subtilis[J]. EMBO J, 2001, 20:1681-1691.

    20. [20]

      URAO T, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Two-component systems in plant signal transduction[J]. Trends in Plant Science, 2000, 5:67-74.

    21. [21]

      SOLANKE A U, SHARMA A K. Signal transduction during cold stress in plants[J]. Physiology and Molecular Biology of Plants, 2008, 14:69-79.

    22. [22]

      LIU Z, JIA Y, DING Y, et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Molecular Cell, 2017, 66(1):117-128.

    23. [23]

      GUO X, LIU D, CHONG K. Cold signaling in plants:Insights into mechanisms and regulation[J]. Journal of Integrative Plant Biology, 2018, 60(9):745-756.

    24. [24]

      ENSMINGER I, BUSCH F, HUNER N P A. Photostasis and cold acclimation:sensing low temperature through photosynthesis[J]. Physiologia Plantarum, 2006, 126:28-44.

    25. [25]

      KIM K N, CHEONG Y H, GRANT J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction inArabidopsis[J]. Plant Cell, 2003, 15:411-423.

    26. [26]

      DESWAL R, CHOWDHARY G K, SOPORY S K. Purification and characterization of a PMA-stimulated kinase and identification of PMA-induced phosphorylation of a polypeptide that is dephosphorylated by low temperature in Brassica juncea[J]. Biochemical and Biophysical Research Communications, 2004, 322:420-427.

    27. [27]

      SHI Y, YANG S. Abscisic acid:Metabolism, transport and signaling[M]. Netherlands:Springer, 2014:337-364.

    28. [28]

      XIONG L, SCHUMAKER K S, ZHU J K. Cell signaling during cold, drought, and salt stress[J]. Plant Cell, 2002, 14(s):165-183.

    29. [29]

      CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants[C]//RAMANJULU S. Plant Stress Tolerance. Stillwater, OK, USA:Humana Press, 2010, 639:39-55.

    30. [30]

      SHI Y T, DING Y L, YANG S H. Cold signal transduction and its interplay with phytohormones during cold acclimation[J]. Plant Cell Physiol, 2015,56(1):7-15.

    31. [31]

      LEE C M, THOMASHOW M F. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance inArabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:15054-15059.

    32. [32]

      魏俊燕, 赵佳, 赵仕琪, 等. 植物ICE1-CBF冷反应通路的激活与调控研究进展[J]. 生物技术通报, 2015, 31(6):8-12.
      WEI J Y, ZHAO J, ZHAO S Q, et al. Activation and regulation on the cold response pathway of ICE1-CBF in plants[J]. Biotechnology Bulletin, 2015, 31(6):8-12.

    33. [33]

      NOVILLO F, ALONSO J M, ECKER J R, et al. CBF2/DREB1C is a negative regulator ofCBF1/DREB1BandCBF3/DREB1A expression and plays a central role in stress tolerance inArabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:3985-3990.

    34. [34]

      JEON J, KIM J. Cold Stress Signaling Networks in Arabidopsis[J]. Journal of Plant Biology, 2013, 56:69-76.

    35. [35]

      ZHAO C, LANG Z, ZHU J K. Cold responsive gene transcription becomes more complex[J]. Trends in Plant Science, 2015, 20:466-468.

    36. [36]

      DOHERTY C J, VAN BUSKIRK H A, MYERS S J, et al. Roles forArabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21:972-984.

    37. [37]

      OUELLET F, CHARRON J B. Cold acclimation and freezing tolerance in plants[J]. Encyclopedia of Life Sciences, 2013, doi:10.1002/9780470015902.a0020093.

    38. [38]

      CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants[J]. Methods in Molecular Biology, 2010, 639:39-55.

    39. [39]

      SU C F, WANG Y C, HSIEH T H, et al. A novelMYBS3-dependent pathway confers cold tolerance in rice[J]. Plant Physiology, 2010, 153:145-158.

    40. [40]

      张坤,邵强.植物冰结构蛋白的功能机制及其应用[J].河南师范大学学报(自然科学版),2013,41(1)109-114. ZHANG K,SHAO Q.Mechanism of action and application of plants ice structuring proteins[J].Journal of Henan Normal University(Natural Science Edition), 2013,41(1)109-114.

    41. [41]

      王春林,尚菲,段春燕,等.H2S在植物抵御逆境胁迫过程中的作用[J].安徽大学学报(自然科学版),2019, 43(3):97-101. WANG C L,SHANG F,DUAN C Y,et al.Physiological functions of hydrogen sulfide in plant defense against adversity stress[J]. Journal of Anhui University(Natural Science Edition), 2010, 153:145-158.

    42. [42]

      岳彩鹏,王宁,李园园,等.外源甲基紫精对烟草活性氧和花芽分化的影响[J].郑州大学学报(理学版),2018,50(4):80-86. YUE C P,WANG N,LI Y Y, et al.Effect of exogenous methylviologen on ROS and folwer bud differentiation in tobacco[J]. Journal of Zhengzhou University(Natural Science Edition), 2018,50(4):80-86.

    43. [43]

      GUO L, YANG H, ZHANG X, et al. Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress inArabidopsis[J]. Journal of Experimental Botany, 2013, 64(6):1755-1767.

    44. [44]

      YUE C, CAO H L, WANG L, et al. Effects of cold acclimation on sugar metabolism and sugarrelated gene expression in tea plant during the winter season[J]. Plant Molecular Biology, 2015, 88:591-608.

    45. [45]

      SHEN J, WANG Y, CHEN C, et al. Metabolite profiling of tea (Camellia sinensis L.) leaves in winter[J]. Scientia Horticulturae, 2015, 192:1-9.

    46. [46]

      CHAN Z, WANG Y, CAO M, et al. RDM4 modulates cold stress resistance inArabidopsis partially through the CBF-mediated pathway[J]. New Phytologist, 2016, 209:1527-39.

    47. [47]

      MEGHA S, BASU U, KAV N N. Regulation of low temperature stress in plants by microRNAs[J]. Plant, Cell & Environment, 2018, 41(1):1-15.

    48. [48]

      DING Y L, SHI Y T, YANG S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, doi:10.1111/nph.15696

    1. [1]

      陈丽文王艳平 . 低温对两种油茶的生理生态效应. 信阳师范学院学报(自然科学版), 2016, 29(4): 534-536. doi: 10.3969/j.issn.1003-0972.2016.04.011

    2. [2]

      陈坤朱涛娄元伟饶本强 . 紫外线(UV)-B辐射增强对植物影响的研究进展. 信阳师范学院学报(自然科学版), 2004, 17(3): 359-366.

    3. [3]

      侯义龙 . RNA干扰及其在植物上的应用研究进展与展望. 信阳师范学院学报(自然科学版), 2010, 23(2): 316-320.

    4. [4]

      归风铁王红军 . 对二甲苯低温氧化反应动力学研究进展. 信阳师范学院学报(自然科学版), 2005, 18(4): 475-477.

    5. [5]

      李先文袁正仿 . 植物寒冻抗性的分子机理研究进展. 信阳师范学院学报(自然科学版), 2003, 16(4): 492-495.

    6. [6]

      李先文谢素霞李勋 . 植物寒冻抗性分子机理研究进展. 信阳师范学院学报(自然科学版), 2011, 24(2): 272-275.

    7. [7]

      薛亚杰余亚军侯佳佳程柯韩雅彭袁红雨周思源程琳 . 被子植物中核糖体失活蛋白基因家族分子进化研究. 信阳师范学院学报(自然科学版), 2018, 31(3): 389-395. doi: 10.3969/j.issn.1003-0972.2018.03.010

    8. [8]

      杨清岭,许时伦,池振中 . 突变压与群体遗传─—自交植物群体基因型频率动态模型的建立. 信阳师范学院学报(自然科学版), 1996, 9(4): 385-388.

    9. [9]

      郑立坤罗永松 . 低温碳纳米管的XPS光谱特征研究. 信阳师范学院学报(自然科学版), 2006, 19(3): 318-321.

    10. [10]

      李先文袁正仿 . 茶叶的冷驯化反应及其与Ca~(2+)的关系. 信阳师范学院学报(自然科学版), 2008, 21(2): 213-216.

    11. [11]

      宋新宇,傅洪淮 . 一类生化反应机理模型的定性研究. 信阳师范学院学报(自然科学版), 1995, 8(2): 119-123.

    12. [12]

      刘德汞曹书勤 . 碘与淀粉显色反应的机理分析. 信阳师范学院学报(自然科学版), 1992, 5(4): 433-435.

    13. [13]

      陈建荣田文玉 . α-氯丙酸的合成及反应机理研究. 信阳师范学院学报(自然科学版), 2010, 23(1): 127-130.

    14. [14]

      杨保河姜卫粉 . 硅纳米孔柱阵列上低温无催化剂生长碳纳米管. 信阳师范学院学报(自然科学版), 2010, 23(4): 558-561.

    15. [15]

      吴诗光谭光轩王红星 . 水稻组织培养物超低温保存研究的现状. 信阳师范学院学报(自然科学版), 1999, 12(2): 238-241.

    16. [16]

      余冠儒 . 低温下电子对物态方程的热贡献. 信阳师范学院学报(自然科学版), 1989, 2(1): 43-56. doi: 10.3969/j.issn.1003-0972.(1989)01-0043-14

    17. [17]

      杨相甫李发启师学珍王太霞 . 《河南植物志》被子植物增补(一). 信阳师范学院学报(自然科学版), 2009, 22(2): 246-247.

    18. [18]

      李家美孙伟娟朱世新 . 《河南植物志》兰科植物学名的订正. 信阳师范学院学报(自然科学版), 2011, 24(1): 73-75.

    19. [19]

      张爱华杨宝华 . 胞嘧啶水化去氨基反应机理的理论研究. 信阳师范学院学报(自然科学版), 2011, 24(1): 56-58.

    20. [20]

      曾小兰王岩 . 硅甲基亚胺与水亲核加成反应机理的理论研究. 信阳师范学院学报(自然科学版), 2004, 17(2): 181-182.

  • 加载中
计量
  • 文章访问数:  374
  • PDF下载量:  7
  • 引证文献数: 0
文章相关
  • 收稿日期:  2019-02-20
  • 录用日期:  2019-05-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

植物抗寒机理研究进展

    作者简介:周棋赢(1984-),男,河南商城人,讲师,博士,主要从事植物逆境生理学研究.
  • 1. 信阳师范学院 生命科学学院, 河南 信阳 464000;
  • 2. 信阳师范学院 大别山农业生物资源保护与利用研究院, 河南 信阳 464000;
  • 3. 信阳师范学院 河南省茶树生物学重点实验室, 河南 信阳 464000;
  • 4. 信阳师范学院 商学院, 河南 信阳 464000
基金项目:  国家自然科学基金项目(U1404319,31270727,U1604110);河南省科技计划项目(182102110449);南湖青年学者奖励计划项目(2016060);安徽省研究人员科研基金项目(2017B190)

摘要: 低温寒害是影响农作物分布、产量和品质的主要胁迫因子.植物抗寒机理研究是比较活跃和进展很快的领域.从植物抗寒的生理生化基础、植物对低温的信号感知、低温信号在植物中的传递及植物冷反应基因的表达调控等四个方面对目前植物抗寒机理的相关研究进行了综述,并对植物抗寒研究在农业生产中的应用进行了展望.

English Abstract

    全文HTML

参考文献 (48) 相关文章 (20)

目录

/

返回文章

本系统由 北京仁和汇智信息技术有限公司 开发 技术支持: info@rhhz.net   百度统计