遗留资源再回收顶板运动及压力显现特征

马文强

马文强. 遗留资源再回收顶板运动及压力显现特征[J]. 信阳师范学院学报(自然科学版), 2019, 32(3): 498-504. DOI: 10.3969/j.issn.1003-0972.2019.03.029
引用本文: 马文强. 遗留资源再回收顶板运动及压力显现特征[J]. 信阳师范学院学报(自然科学版), 2019, 32(3): 498-504. DOI: 10.3969/j.issn.1003-0972.2019.03.029
MA Wenqiang. Roof Movement and Strata Behavior Features of Mining the Remaining Resources[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 498-504. DOI: 10.3969/j.issn.1003-0972.2019.03.029
Citation: MA Wenqiang. Roof Movement and Strata Behavior Features of Mining the Remaining Resources[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 498-504. DOI: 10.3969/j.issn.1003-0972.2019.03.029

遗留资源再回收顶板运动及压力显现特征

基金项目: 

国家自然科学基金项目(41807240);河南省科技攻关项目(182102310786);信阳师范学院“南湖学者”奖励计划资助

详细信息
    作者简介:

    马文强(1989-),男,河南渑池人,讲师,博士,从事岩石力学及矿山压力与岩层控制方面的研究.

  • 中图分类号: TD325

Roof Movement and Strata Behavior Features of Mining the Remaining Resources

  • 摘要: 为分析遗留下分层开采时再生顶板的运动规律及矿压显现特征,以北皂煤矿油页岩分层下行开采为背景,结合前期研究中建立的下分层再生顶板碎裂结构模型及其分带特征,通过改进传统的相似材料配比构建了下分层再生顶板碎裂结构相似材料试验模型,并对下分层开采中的顶板运动、支承压力分布及支架受力特点进行了研究.结果表明:受二次采动影响,再生顶板垮落岩块碎胀系数较小,压实程度较好.上、下分层采高接近情况下,下分层工作面支承压力影响范围及峰值均小于上分层,分别为上分层的38%和51%;下分层支架受力为上分层的91.6%;下分层采出后顶板中不规则冒落带及规则冒落带高度均增加至采前的3倍;裂隙带高度增加为采前的1.6倍.为类似条件的下分层采场设计、支架选型提供依据.
    Abstract: To analyze the movement rule and pressure behavior of regenerated roof when mining the remaining lower slice of oil shale, on the background of downward mining oil shale slices in Beizao coal mine, combined with the regenerated roof model built in preliminary work which has cataclastic structure and zoning features, a similar material model of regenerated roof was constructed through improving the traditional material ratio. The characteristics of roof movement, abutment pressure distribution and support stress were studied. The results indicate that the falling rocks of regenerated roof has small crushing expansion coefficient and better compaction. Under situation of the same mining height of the upper and lower slices, both the influence sphere and peak value of lower slice are less than upper slice, which account for 38% and 51% of the upper slice mining, respectively. The support stress of lower slice accounts for 91.6% of upper slice. After the mining of lower slice, both the irregular and regular caving zone height of regenerated roof increase treble over the upper slice mining, and fissure zone height increases about 1.6 times. The results provide some scientific proof for mining design and selection of hydraulic support in similar conditions.
  • [1] 陶明印,刘峰.再生复杂顶板应力分析和控制研究[J].中国煤炭,2007, 33(12):33-36.

    TAO Mingyin, LIU Feng. Stress analysis and control research of complex regenerated roof[J]. China Coal, 2007, 33(12):33-36.

    [2] 赵和松.再生顶板的结构形式及其顶板控制[J].煤炭科学技术,1993(5):2-5. ZHAO Hesong. Constitution and control of regenerated roof[J]. Coal Science and Technology, 1993

    (5):2-5.

    [3] 杨庆威.白皎煤矿余煤复采顶板控制及防灭火技术应用[D].西安:西安科技大学,2013. YANG Qingwei. Roof control and application of comprehensive technology of fire prevention and extinguishing of residual coal compound mining of Baijiao coal mine[D]. Xi'an:Xi'an University of Science and Technology, 2013.
    [4] 赵通,弓培林,王开,等.残煤复采区域破碎软岩巷道变形机理及控制[J].矿业研究与开发,2014, 34(6):17-20

    , 60. ZHAO Tong, GONG Peilin, WANG Kai, et al. Deformation mechanism and control on broken and soft rock drifts in residual coal mining stope[J]. Mining Research and Development, 2014, 34(6):17-20, 60.

    [5] 梁冰,杨冬鹏,孙维吉.中厚倾斜煤层残留煤的复采数值模拟[J].西安科技大学学报,2008, 28(2):371-374.

    LIANG Bing, YANG Dongpeng, SUN Weiji. Numerical simulation on the residual coal second mining of inclined medium-thickness coal seam[J]. Journal of Xi'an University of Science and Technology, 2008, 28(2):371-374.

    [6] 杨书召,翟新献,康全玉,等.厚煤层分层开采再生顶板和设备配套问题研究[J].焦作工学院学报(自然科学版),2003, 22(1):5-8. YANG Shuzhao, ZHAI Xinxian, KANG Quanyu, et al. Study on reproducing roof strata and the equipment forming a complete set of thick coal seam slicing[J]. Journal of Jiaozuo Institute of Technology (Natural Science), 2003, 22(1):5-8.
    [7] 郭帅,孔宪法,康天合,等.采空区下近距离煤层综采工作面支架载荷分析[J].煤矿安全,2013, 44(5):214-217.

    GUO Shuai, KONG Xianfa, KANG Tiange, et al. Support load analysis of fully-mechanized mining face in close distance coal seam under goaf[J]. Safety in Coal Mines, 2013, 44(5):214-217.

    [8] 王向楠,崔子强,王玉峰,等.三软煤层复采工作面矿压显现特征分析[J].中州煤炭,2014(8):23-26. WANG Xiangnan, CUI Ziqiang, WANG Yufeng, et al. Research on weighing feature of repeated mining face in three soft coal seam[J]. Zhongzhou Coal, 2014

    (8):23-26.

    [9] 李凤仪,王维维.薄煤层下分层复采工作面顶板控制技术[J].矿业安全与环保,2009, 36(1):50-51.

    LI Fengyi, WANG Weiwei. The roof control technology of repeated working face of lower slice thin seam[J]. Mining Safety & Environmental Protection, 2009, 36(1):50-51.

    [10] 王同旭,马文强,曲孔典.随机节理岩体巷道再生顶板失稳机理与控制研究[J].采矿与安全工程学报,2016, 33(2):265-270.

    WANG Tongxu, MA Wenqiang, QU Kongdian. Study of instability mechanism and control of roadway regenerated roof in random joint rock[J]. Journal of Mining & Safety Engineering, 2016, 33(2):265-270.

    [11] 马文强,李恭建,王同旭.再生顶板下巷道布置及支护离散元模拟[J].辽宁工程技术大学学报(自然科学版),2016, 35(9):897-901. MA Wenqiang, LI Gongjian, WANG Tongxu. Discrete element research of roadway layout and its support under regenerated roof[J]. Journal of Liaoning Technical University(Natural Science Edition), 2016, 35(9):897-901.
    [12] 马文强,王同旭,江东海,等.基于双承载拱的巷道再生顶板控制机理[J].采矿与安全工程学报,2017, 34(1):47-53.

    MA Wenqiang, WANG Tongxu, JIANG Donghai, et al. Control mechanism of roadway regenerated roof based on double load-bearing arches[J]. Journal of Mining & Safety Engineering, 2017, 34(1):47-53.

    [13] 马文强,王同旭,马紫阳.复采采场再生顶板结构及支架载荷确定[J].岩土工程学报,2017, 39(10):1892-1900.

    MA Wenqiang, WANG Tongxu, MA Ziyang. Structure of regenerated roof and determination of support load in re-mining stope[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10):1892-1900.

    [14]

    HE Manchao, JIA Xuena, GONG Weili, et al. Physical modeling of an underground roadway excavation in vertically stratified rock using infrared thermography[J]. International Journal of Rock Mechanics&Mining Engineering, 2010, 47(7):1212-1221.

    [15]

    HE Manchao. Physical modeling of an underground roadway excavation in geologically 45° inclined rock using infrared thermography[J]. Engineering Geology, 2011, 121(3/4):165-176.

    [16]

    GONG Weili, WANG Jiong, GONG Yuxin, et al. Thermography analysis of a roadway excavation experiment in 60° inclined stratified rocks[J]. International Journal of Rock Mechanics & Mining Engineering, 2013, 60:134-147.

    [17]

    GONG Weili, PENG Yanyan, HE Manchao, et al. Thermal image and spectral characterization of roadway failure process in geologically 45 degrees inclined rocks[J]. Tunnelling and Underground Space Technology, 2015, 49:156-173.

    [18]

    JU Jinfeng, XU Jialin, ZHU Weibing. Longwall chock sudden closure incident below coal pillar of adjacent upper mined coal seam under shallow cover in the Shendong coalfield[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77:192-201.

    [19]

    KANG Hongpu, LOU Jinfu, GAO Fuqiang, et al. A physical and numerical investigation of sudden massive roof collapse during longwall coal retreat mining[J]. International Journal of Coal Geology, 2018, 188:25-36.

    [20] 李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1998. LI Hongchang. Similar simulation test of mine ground pressure[M]. Xuzhou:China University of Mining and Technology Press, 1998.
  • 期刊类型引用(1)

    1. 张创业,杨磊. 复合再生顶板条件下煤体固化与顶板强化技术研究及应用. 煤炭工程. 2024(06): 48-54 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1032
  • HTML全文浏览量:  88
  • PDF下载量:  5
  • 被引次数: 1
出版历程
  • 收稿日期:  2018-11-05
  • 修回日期:  2019-01-09
  • 发布日期:  2019-07-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭