不同表面活性剂对CoSb3纳米粉体的影响及其非晶化研究

吴芳, 王伟

吴芳, 王伟. 不同表面活性剂对CoSb3纳米粉体的影响及其非晶化研究[J]. 信阳师范学院学报(自然科学版), 2019, 32(3): 459-464. DOI: 10.3969/j.issn.1003-0972.2019.03.021
引用本文: 吴芳, 王伟. 不同表面活性剂对CoSb3纳米粉体的影响及其非晶化研究[J]. 信阳师范学院学报(自然科学版), 2019, 32(3): 459-464. DOI: 10.3969/j.issn.1003-0972.2019.03.021
WU Fang, WANG Wei. Effects of Surfactants on the CoSb3 Nanopodwers and Amorphization of the Synthesized Nanopodwers[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 459-464. DOI: 10.3969/j.issn.1003-0972.2019.03.021
Citation: WU Fang, WANG Wei. Effects of Surfactants on the CoSb3 Nanopodwers and Amorphization of the Synthesized Nanopodwers[J]. Journal of Xinyang Normal University (Natural Science Edition), 2019, 32(3): 459-464. DOI: 10.3969/j.issn.1003-0972.2019.03.021

不同表面活性剂对CoSb3纳米粉体的影响及其非晶化研究

基金项目: 

国家自然科学基金项目(61705062);河南省重点科技攻关项目(182102210594);河南省高等学校重点科研项目(18A140013)

详细信息
    作者简介:

    吴芳(1982-),女,河南温县人,副教授,博士,主要从事纳米热电材料的研究.

  • 中图分类号: TG146.4

Effects of Surfactants on the CoSb3 Nanopodwers and Amorphization of the Synthesized Nanopodwers

  • 摘要: 分别选用不同的表面活性剂(SDBS、CTAB、EDTA、PVP),采用水热法成功制备CoSb3纳米粉体.对制备的纳米粉体分别进行XRD和SEM表征,研究了不同表面活性剂对制备的CoSb3纳米粉体的影响.结果表明不同表面活性剂对制备的CoSb3纳米粉体形貌有显著的影响.并将水热法制备的CoSb3纳米粉体,采用脉冲激光非晶化技术进行处理,结果表明纳米粉体实现了部分非晶化.通过样品的XRD分析研究了影响CoSb3纳米粉体部分非晶化的条件,结果表明扫描重复次数的增加可以提高CoSb3基方钴矿热电材料的非晶化能力,适当提高扫描速度有利于CoSb3基方钴矿热电材料的非晶化.
    Abstract: The CoSb3 nanopodwers were synthesized by the hydrothermal method using different surfactants which were Cetyltrimethyl Ammonium Bromide (CTAB), Ethylene Diamine Tetraacetic Acid (EDTA), sodium dodecyl benzene sulfonate (SDBS) and Polyvinyl Pyrrolidone (PVP). The phase structure and micro-topography of the nanopowders were investigated by X-ray diffractometer (XRD) and a fileld-emission scanning electron microscopy (FESEM). The result showed that different surfactants had significant influence on the morphologies of CoSb3 nanopodwers. Laser rapid quenching method was used to deal with CoSb3 nanopowders that synthesized by the hydrothermal method in order to achieve partial amorphization of the CoSb3.The amorphous conditions of CoSb3 were investigated by the XRD. The results showed that (1) with the increase of the scanning number, the amorphous level of CoSb3 raised; (2) Increasing the scanning speed properly could be helpful to increase the amorphous level of CoSb3.
  • [1]

    HE J, TRITT T M. High advances in thermoelectric materials research:Looking back and moving forward[J]. Science, 2017, 357(6358):1369-1381.

    [2]

    LI Y, LI C G, WANG B B, et al. A comparative study on the thermoelectric properties of CoSb3prepared by hydrothermal and solvothermal route[J]. Journal of Alloys and Compounds, 2019, 770:772-774.

    [3]

    PEI Y Z, CHEN L D, ZHANG W, et al. Synthesis and thermoelectric properties of KyCo4Sbl2[J]. Applied Physics Letters, 2006, 89(22):1107-1110.

    [4]

    TOPRAK M S, STIEWE C, PLATZEK D. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3[J]. Advanced Functional Materials, 2004, 14(12):1189-1196.

    [5]

    BECK H, GUENTHERODT H J. Glassy metal Ⅱ:Atomic structure and dynamics, electronic structure, magnetic properties[M]. Berlin:Springer-Verlag, 1983:28.

    [6] 钟敏霖, 刘文今, 姚可夫, 等. Fe-C-Si-B合金连续激光非晶化及非晶形成条件的研究[J], 金属学报, 1997, 33(4):413-419.

    ZHONG M L, LIU W J, YAO K F, et al. CW laser glazing of Fe-C-Si-B alloy and forming condition of metallic glasses[J].Acta Metallurgica Sinca,1997, 33(4):413-419.

    [7] 许春香,张金山. 材料制备新技术[M]. 北京:化学工业出版社, 2010:104-123. XU C X, ZHANG J S. New technology of material preparation[M]. Beijing:Chemistry Industry Press, 2010:104

    -123.

    [8]

    JIAN X, ZHAO X B, MI J L, et al. Solvothermal synthesis of nanosized CoSb3 skutterudite[J]. Journal of Zhejiang University-Science B, 2004, 5(12):1504-1508.

    [9]

    LI J Q, FENG X W, SUN W A, et al. Solvothermal synthesis of nano-sized skutterudite Co4-xFexSb12 powders[J]. Materials Chemistry and Physics, 2008, 112(1):57-62.

    [10]

    VENKATASUBRAMANIAN R, SⅡVOLA E, COLPITTS V, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 597(413):579-602.

    [11]

    YANG L, HNG H H, CHENG H, et al. Synthesis of CoSb3 by a modified polyol process[J]. Materials Letters, 2008, 62(16):2483-2485.

    [12]

    MI J L, ZHAO X B, ZHU T J, et al. Solvothermal synthesis and electrical transport properties of skutterudite CoSb3[J]. Journal of Alloys and Compounds, 2006, 417(2):269-272.

    [13]

    XIE J, ZHAO X B, CAO G S, et al. Solvothermal synthesis and electrochemical performances of nanosized CoSb3 as anode materials for Li-ion batteries[J]. Journal of Power Sources, 2005,140(2):350-354.

    [14] 周芸, 沈容, 史庆南, 等. 热电材料的最新进展[J]. 昆明理工大学学报(理工版), 2003, 28(3):14-17. ZHOU Y, SHEN R, SHI Q N, et al. Recent development of thermoelectric materials[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2003, 28(3):14-17.
    [15]

    ZHAO Q, WANG Y G. A facile two-step hydrothermal route for the synthesis of low-dimensional structured Bi2Te3 nanocrystals with various morphologies[J]. Journal of Alloys and Compounds, 2010, 497(2):57-61.

    [16]

    KUMARI L, LI W Z, HUANG J Y, et al. Solvothermal synthesis, structure and optical property of nanosized CoSb3 skutterudite[J]. Nanoscale Research Letter, 2010, 5(10):1698-170.

计量
  • 文章访问数:  1257
  • HTML全文浏览量:  118
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-05
  • 修回日期:  2019-04-02
  • 发布日期:  2019-07-09

目录

    /

    返回文章
    返回