黎曼流形上关于p-Laplacian的ν-Euclidean类型的Faber-Krahn不等式
The Faber-Krahn Inequalities of ν-Euclidean Type for the p-Laplacian on Riemannian Manifolds
-
摘要: 首先利用Federer-Fleming定理研究了黎曼流形上p-Laplace算子的解析Faber-Krahn不等式;其次利用余面积公式和Cavalieri原理研究了黎曼流形上p-Laplace算子的解析Faber-Krahn不等式的一般化.Abstract: The Federer-Fleming Theorem is firstly used to investigate the analytic Faber-Krahn inequalities of Euclidean type for the p-Laplace operator on manifolds.Secondly,the coarea formula and Cavalieri's principle is applied to study the general Faber-Krahn inequalities of Euclidean type for the p-Laplace operator on manifolds.