2-维Ginzburg-Landau方程H1-Galerkin有限元方法的高精度分析
Superconvergence Analysis of an H1-Galerkin Mixed Finite Element Method for Two-dimension Ginzburg-Landau Equations
-
摘要: 采用非协调单元EQ1rot及零阶Raviart-Thomas元(EQ1rot+Q10×Q01),对2-维Ginzburg-Landau方程讨论了一种H1-Galerkin混合有限元方法.在半离散和线性化Euler全离散格式下,分别有技巧地导出了原始变量u在H1模意义下及流量p在H(div;Ω)模意义下的超逼近性质.最后,给出两个数值算例验证了理论结果.Abstract: EQ1rot nonconforming finite element and zero order Raviart-Thomas element are applied to discuss an H1-Galerkin mixed finite element method(MFEM) for the two-dimension Ginzburg-Landau equations. The superclose results of original variant u in H1-norm and flux variant H(div;Ω) in L2-norm are derived technically under the semi-discrete scheme and the linearized Euler fully-discrete scheme. At last, numerical experiment is included to illustrate the feasibility of the proposed method.