Hadamard流形中子流形的p-调和函数的刘维尔型定理
Liouville Type Theorems for p-harmonic Functions on Submanifolds in a Hadamard Manifold
-
摘要: 若Hadamard流形中的完备非紧可定向子流形具有有限全曲率且截面曲率非正,证明了当光滑函数u的Lp范数有限时,任何的p-调和函数一定是一个常数(p ≥ 2).Abstract: Let m-dimensional complete non-compact oriented submanifolds in Hadamard manifolds have finite total curvature and non-positive sectional curvature. Further, it is assumed that the first eigenvalue of Laplacian in M is bounded by an appropriate constant. Then, when the norm of Lp of the smooth function u is finite, any p-harmonic function must be a constant(p ≥ 2).