一类具有时滞和CTL免疫反应的HIV-1感染模型的稳定性和Hopf分支

Stability and Hopf Bifurcation of a HIV-1 Infection Model with Time Delay and CTL Immune Response

  • 摘要: 研究一类具有时滞和CTL免疫反应的HIV-1感染动力学模型.通过分析特征方程,讨论了系统各可行平衡点的局部稳定性和系统Hopf分支的存在性.通过构造适当的Lyapunov函数,研究了未感染平衡点和CTL-激活感染平衡点的全局稳定性.最后对所得理论结果进行了数值模拟.

     

    Abstract: A HIV-1 infection model with time delay and CTL immune response is studied. By analyzing the corresponding characteristic equation, the local stability of each of feasible equilibria and the existence of Hopf bifurcation are established, respectively. By constructing the appropriate Lyapunov function, the global stability of the infection-free equilibrium and the CTL-activated infection equilibrium are studied. Numerical simulations are carried out to illustrate the theoretical results.

     

/

返回文章
返回