Superconvergence Analysis of a Nonconforming Mixed Finite Element Method for Pseudo-hyperbolic Equation
-
摘要: 基于非协调EQ1rot元和零阶R-T元针对伪双曲方程,建立了一个自然满足B-B条件的非协调低阶混合元逼近格式.借助单元插值算子的特殊性质、导数转移技巧和插值后处理技术,在半离散格式下给出了原始变量在H1-模和中间变量在L2-模意义下的O(h2)阶超逼近性与整体超收敛结果.同时,对于一个二阶全离散格式得到了原始变量H1-模的O(h2+τ2)超逼近性和中间变量L2-模的O(h+τ2)最优误差估计.Abstract: With help of the nonconforming EQ1rot element and zero order Raviart-Thomas element,a new low order nonconforming mixed finite elements approximation scheme was proposed for the pseudo-hyperbolic equation, which can satisfy Brezzi-Babuska condition automatically.Based on the special characters of the interpolation operators of the elements, derivative transferring technique with respect to the time and interpolation post-processing technique, the superclose properties and superconvergence results with order O(h2) for the primitive solution in H1-norm and the intermediate variable in L2-norm were deduced separately for semi-discrete scheme. At the same time, the superclose properties with order O(h2+τ2) and optimal order error estimates with order O(h+τ2) of original variable in H1-norm and intermediate variable in L2-norm were separately derived for a second order fully-discrete scheme.
-
-
[1] NAGUMO J, ARIMOTO S, YOSHIZAWA S. An active pulse transmission line simulating nerve axon[J]. Proc IRB, 1962, 50:91-102.
[2] WAN W M, LIU Y C.Long time behaviors of solutions for initial boundary value problem of pseudo-hyperbolic equations[J].Acta Math Appl Sin, 1999, 22:311-355.
[3] 史艳华,石东洋. 伪双曲方程类Wilson非协调元逼近[J].山东大学学报(理学版),2013,48(4):77-84. SHI Yanhua, SHI Dongyang. The quasi-Wilson nonconforming finite element approximation to pseudo -hyperbolic equations[J]. Journal of Shandong University (Natural Science Edition), 2013, 48(4):77-84. [4] GUO H, RUI H X. Least-squares Galerkin procedures for pseudo-hyperbolic equations[J]. Appl Math Comp, 2007, 189(1):425-439.
[5] SHI D Y, TANG Q. Super-convergence analysis of splitting positive definite nonconforming mixed finite element method for pseudo-hyperbolic equations[J]. Acta Math Appl Sin, 2013, 29:843-854.
[6] 石东洋,史艳华. 半线性伪双曲方程最低阶的H1-Galerkin混合元方法[J]. 系统科学与数学,2015,35(5):514-526. SHI Dongyang, SHI Yanhua. The lowest order H1-Galerkin mixed finite element method for semi-linear pseudo-hyperbollc equation[J]. J Sys Sci & Math Scis,2015, 35(5):514-526.
[7] SHI D Y,ZHANG Y D.An H1-Galerkin nonconforming mixed finite element method for the pseudo-hyperbolic equations[J]. Math Appl, 2011, 24:448-455.
[8] 石东洋,李明浩. 二阶椭圆问题一种新格式的高精度分析[J].应用数学学报,2014,37(1):45-58. SHI Dongyang, LI Mibghao. High accuracy analysis of new schemes or second order elliptic problem for recurrent event data[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(1):45-58.
[9] 石玉,陈宝凤,李威,等. 非线性抛物方程的一个新混合元格式的超收敛分析[J].信阳师范学院学报(自然科学版),2014,27(3):328-331. SHI Yu, CHENG Baofeng, LI Wei, et al. Superconvergence analysis of a new mixed finite element scheme for nonlinear parabolic equations[J]. Journal of Xinyang Normal University (Natural Science Edition), 2014, 27(3):328-331. [10] 石东洋,张亚东.抛物型方程一个新的非协调混合元超收敛分析与外推[J].计算数学,2013,35(4):337-352. SHI Dongyang, ZHANG Yadong. Superconvergence and extrapolation analysis of a new nonconforming mixed finite element approximation for parabolic equation[J]. Mathematica Numerica Sinica, 2013, 35(4):337-352.
[11] 刘倩,石东洋. 双相滞热传导方程的一个非协调混合有限元方法[J].河南师范大学学报(自然科学版),2016,44(2):15-21. LIU Qian, SHI Dongyang. A nonconforming mixed finite element method for dual phase lagging heat conduction equations[J]. Journal of Henan Normal University (Natural Science Edition), 2016, 44(2):15-21. [12] 张厚超,毛凤梅,白秀琴. 广义神经传播方程新的非协调混合元方法的超逼近分析[J].四川师范大学学报(自然科学版),2017,40(4):464-472. ZHANG Hongchao, MAO Fengmei, BAI Xiuqin. Superclose estimates analysis of a new mixed finite elements method for generalized nerve conduction equation[J]. Journal of Sichuan Normal University (Natural Science Edition), 2017, 40(4):464-472. [13] 林群,严宁宁. 高效有限元构造与分析[M]. 保定:河北大学出版社,1996. LIN Qun, YAN Ningning. Construction and analysis of high efficiency finite element[M]. Baoding:Hebei University Press, 1996. [14] SHI D Y,MAO S P,CHEN S C. An anisotropic nonconforming finite element with some super-convergence results[J]. J Comput Math, 2005, 23(3):261-274.
[15] LIN Q,TOBISKA L,ZHOU Aihui. Super_convergence and extrapolation of nonconforming low order finite elements applied to the Poisson equation[J]. IMA J Numer Anal, 2005, 25(1):160-181.
-
期刊类型引用(1)
1. 李先枝, 范中广. 非线性边界条件的Sobolev方程的一个低阶混合元格式. 杭州师范大学学报(自然科学版). 2019(01): 88-92 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1037
- HTML全文浏览量: 64
- PDF下载量: 3
- 被引次数: 1