具有势函数的拟-F-调和映射的若干结果

韩英波, 蒋凯歌, 张倩玉

韩英波, 蒋凯歌, 张倩玉. 具有势函数的拟-F-调和映射的若干结果[J]. 信阳师范学院学报(自然科学版), 2018, 31(1): 5-10. DOI: 10.3969/j.issn.1003-0972.2018.01.002
引用本文: 韩英波, 蒋凯歌, 张倩玉. 具有势函数的拟-F-调和映射的若干结果[J]. 信阳师范学院学报(自然科学版), 2018, 31(1): 5-10. DOI: 10.3969/j.issn.1003-0972.2018.01.002
HAN Yingbo, JIANG Kaige, ZHANG Qianyu. Some Results for Quasi-F-harmonic Maps with Potential[J]. Journal of Xinyang Normal University (Natural Science Edition), 2018, 31(1): 5-10. DOI: 10.3969/j.issn.1003-0972.2018.01.002
Citation: HAN Yingbo, JIANG Kaige, ZHANG Qianyu. Some Results for Quasi-F-harmonic Maps with Potential[J]. Journal of Xinyang Normal University (Natural Science Edition), 2018, 31(1): 5-10. DOI: 10.3969/j.issn.1003-0972.2018.01.002

具有势函数的拟-F-调和映射的若干结果

基金项目: 

国家自然科学基金项目(11201400);信阳师范学院"南湖学者奖励计划"青年项目;河南省高校骨干教师培养计划项目(2016GGJS-096);信阳师范学院研究生科研创新基金项目(2016KYJJ30)

详细信息
    作者简介:

    韩英波(1978-),男,山东菏泽人,副教授,博士,主要从事微分几何的研究.

  • 中图分类号: O186.1

Some Results for Quasi-F-harmonic Maps with Potential

  • 摘要: 引入了从光滑度量测度空间(M,g,e-φxdvg)到黎曼流形中具有势函数的(弱)拟-F-调和映射的概念.在H和Bakry-Émery Ricci张量的条件下,利用应力-能量张量证明了上述映射的刘维尔型定理.
    Abstract: The notion of (weakly) quasi-F-harmonic map with potential was introduced from a smooth metric measure space (M,g,e-φ(x)dvg) into a Riemannian manifold. By using the stress-energy tensor, some Liouville type results were obtained for these maps under conditions on H and the Bakry-Émery Ricci tensor.
  • [1]

    WANG Guofang, XU Deliang. Harmonic maps from smooth metric measure spaces[J]. International Journal of Mathematics, 2012, 23(9):1-21.

    [2] 韩英波,张倩玉,喻丽菊.CC-稳态映射的刘维尔型定理[J].信阳师范学院学报(自然科学版),2017,30(1):22-27. HAN Yingbo, ZHANG Qianyu, YU Liju. Liouville type theorems for CC-stationary maps[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017, 30(1):22-27.
    [3]

    FARDOUN A, RATTO A. Harmonic maps with potential[J]. Calculus of Variations and Partial Differential Equations, 1997, 5(2):183-197.

    [4]

    FENG Shuxiang, HAN Yingbo. Liouville type theorems of F-Harmonic maps with potential[J]. Results in Mathematics, 2014, 66(1/2):43-64.

    [5]

    HAN Yingbo, FENG Shuxiang. Monotonicity formulas and the stability of F-stationary maps with potential[J]. Houston Journal of Mathematics, 2014, 40(3):681-713.

    [6] 韩英波,方联银,李静.带位势的弱F-调和映照的单调公式[J].信阳师范学院学报(自然科学版),2016,29(2):165-170. HAN Yingbo, FANG Lianyin, LI Jing. Monotonicity formulas of weakly F-Harmonic map with potential[J]. Journal of Xinyang Normal University (Natural Science Edition), 2016, 29(2):165-170.
    [7]

    XIN Y L. Geometry of harmonic maps[M]. Springer:Progress in Nonlinear Differential Equations and their Applications, 1996:23.

    [8]

    ARA M. Geometry of F-harmonic maps[J]. Kodai Mathematical Journal, 1999, 22(22):243-263.

    [9]

    DONG Yuxin, WEI S W. On vanishing theorems for vector bundle valued p-Forms and their applications[J]. Communications in Mathematical Physics, 2011, 304(2):329-368.

    [10]

    DONG Yuxin, LIN Hezi, YANG Guilin. Liouville theorems for F-Harmonic maps and their applications[J]. Results in Mathematics, 2016, 69(1/2):105-127.

    [11]

    HAN Y B, LI Y, REN Y B, et al. New comparison theorems in Riemannian geometry[J]. Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 2014, 9(2):163-186.

  • 期刊类型引用(4)

    1. 种田,邱紫阳. F-H-调和映照的刘维尔型定理. 华中师范大学学报(自然科学版). 2024(05): 519-525 . 百度学术
    2. 韩英波,王艳,薛玉莹. F-稳态映射的刘维尔型定理. 信阳师范学院学报(自然科学版). 2021(01): 16-21 . 本站查看
    3. 冯书香,蒋凯歌,李静. F-CC调和映射的若干结果. 信阳师范学院学报(自然科学版). 2020(01): 31-36 . 本站查看
    4. 韩英波,蒋凯歌,张倩玉. Hadamard流形中子流形的p-调和函数的刘维尔型定理. 信阳师范学院学报(自然科学版). 2019(01): 11-16 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  1116
  • HTML全文浏览量:  65
  • PDF下载量:  27
  • 被引次数: 4
出版历程
  • 收稿日期:  2017-01-11
  • 修回日期:  2017-07-19
  • 发布日期:  2018-01-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭