A Posteriori Error Estimates of Multi-Level Finite Element Methods for Second Order Quasi-Linear Elliptic Problems
-
摘要: 考虑二阶拟线性椭圆问题的多水平有限元方法.利用有限元方法精确解和多水平算法解之间的超逼近性质,得到了该问题多水平有限元方法的后验误差估计子.数值算例验证了该理论的正确性.Abstract: Multi-level finite element methods were considered for quasi-linear elliptic problems. By the superconvergence property between the exact solution of finite element method and the solution of the multi-level algorithm, the posteriori error estimators for this problems were obtained. Numerical experiments confirmed the theoretical analysis.
-
Keywords:
- multilevel methods /
- posteriori error estimates /
- quasi-linear
-
-
[1] HE Yinnian, ZHANG Yan, XU Hui. Two-Level Newton's method for nonlinear elliptic PDEs[J]. Journal of Scientific Computing, 2013, 57(1):124-145.
[2] HAN Jiayu, YANG Yidu, BI Hai. A new multigrid finite element method for the transmission eigenvalue problems[J]. Applied Mathematics and Computation, 2017, 292(1):96-106..
[3] LU Peipei, XU Xuejun. A robust multilevel method for the time-harmonic maxwell equation with high wave number[J]. SIAM Journal on Scientific Computing, 2016, 38(2):856-874.
[4] CHEN Long, NOCHETTO R, OTÁROLA E, et al. Multilevel methods for nonuniformly elliptic operators and fractional diffusion[J]. Mathematics of Computation, 2016, 85(302):2583-2607.
[5] VERFVRTH R. A review of a posteriori error estimation and adaptive mesh-refinement techniques[M]. Chichester:Wiley-Teubner, 1996.
[6] ZHANG Tie, LIN Tao. A posteriori error estimate for a modified weak Galerkin method solving elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2017, 33(1):381-398.
[7] LIU Liping, LIU Tang, K AŘÍŽEK M. Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type[J]. SIAM Journal on Numerical Analysis, 2004, 42(4):1729-1744.
[8] BI Chunjia, GINTING V. Global superconvergence and a posteriori error estimates of the finite element method for second-order quasilinear elliptic problems[J]. Journal of Computational and Applied Mathematics, 2014, 260(2):78-90.
[9] ARIOLI M, GEORGOULIS E H, LOGHIN D. Convergence of inexact adaptive finite element solvers for elliptic problems. RAL-TR-2009-021[R].Didcot UK:Rutherford Appleton Laboratory,2009.
[10] CIARLET P G. The finite element method for elliptic problems[M]. North-Holland, Amsterdam,1978:10-15.
[11] BI Chunjia, LIN Yanping, YANG Min. Finite volume element method for monotone nonlinear elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2013, 29(4):1097-1120.
[12] XU Jinchao. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM Journal on Numerical Analysis, 1996, 33(5):1759-1777.
[13] 王烈衡,许学军.有限元方法的数学基础[M].北京:科学出版社,2004:116-123. WANG Lieheng, XU Xuejun. Mathematical foundations of the finite element method[M]. Beijing:Science Press, 2004:116 -123.
[14] CARSTENSEN C, VERFÜRTH R. Edge residuals dominate a posteriori error estimates for low order finite element methods[J]. SIAM Journal on Numerical Analysis, 1999, 36(5):1571-1587.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 1179
- HTML全文浏览量: 63
- PDF下载量: 8
- 被引次数: 1