拟线性椭圆问题多水平有限元方法的后验误差估计

郭利明, 张庆敏

郭利明, 张庆敏. 拟线性椭圆问题多水平有限元方法的后验误差估计[J]. 信阳师范学院学报(自然科学版), 2017, 30(4): 531-534. DOI: 10.3969/j.issn.1003-0972.2017.04.004
引用本文: 郭利明, 张庆敏. 拟线性椭圆问题多水平有限元方法的后验误差估计[J]. 信阳师范学院学报(自然科学版), 2017, 30(4): 531-534. DOI: 10.3969/j.issn.1003-0972.2017.04.004
GUO Liming, ZHANG Qingmin. A Posteriori Error Estimates of Multi-Level Finite Element Methods for Second Order Quasi-Linear Elliptic Problems[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017, 30(4): 531-534. DOI: 10.3969/j.issn.1003-0972.2017.04.004
Citation: GUO Liming, ZHANG Qingmin. A Posteriori Error Estimates of Multi-Level Finite Element Methods for Second Order Quasi-Linear Elliptic Problems[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017, 30(4): 531-534. DOI: 10.3969/j.issn.1003-0972.2017.04.004

拟线性椭圆问题多水平有限元方法的后验误差估计

基金项目: 

信阳师范学院2015年度重大预研项目(15155)

国家自然科学基金项目(11601466)

信阳师范学院博士科研启动基金(15021)

信阳师范学院2016年度青年基金项目(16019)

信阳师范学院"南湖学者奖励计划"青年项目

详细信息
    作者简介:

    郭利明(1988-),女,河南偃师人,讲师,博士,主要从事偏微分方程数值解方向研究.

  • 中图分类号: O241.82

A Posteriori Error Estimates of Multi-Level Finite Element Methods for Second Order Quasi-Linear Elliptic Problems

  • 摘要: 考虑二阶拟线性椭圆问题的多水平有限元方法.利用有限元方法精确解和多水平算法解之间的超逼近性质,得到了该问题多水平有限元方法的后验误差估计子.数值算例验证了该理论的正确性.
    Abstract: Multi-level finite element methods were considered for quasi-linear elliptic problems. By the superconvergence property between the exact solution of finite element method and the solution of the multi-level algorithm, the posteriori error estimators for this problems were obtained. Numerical experiments confirmed the theoretical analysis.
  • [1]

    HE Yinnian, ZHANG Yan, XU Hui. Two-Level Newton's method for nonlinear elliptic PDEs[J]. Journal of Scientific Computing, 2013, 57(1):124-145.

    [2]

    HAN Jiayu, YANG Yidu, BI Hai. A new multigrid finite element method for the transmission eigenvalue problems[J]. Applied Mathematics and Computation, 2017, 292(1):96-106..

    [3]

    LU Peipei, XU Xuejun. A robust multilevel method for the time-harmonic maxwell equation with high wave number[J]. SIAM Journal on Scientific Computing, 2016, 38(2):856-874.

    [4]

    CHEN Long, NOCHETTO R, OTÁROLA E, et al. Multilevel methods for nonuniformly elliptic operators and fractional diffusion[J]. Mathematics of Computation, 2016, 85(302):2583-2607.

    [5]

    VERFVRTH R. A review of a posteriori error estimation and adaptive mesh-refinement techniques[M]. Chichester:Wiley-Teubner, 1996.

    [6]

    ZHANG Tie, LIN Tao. A posteriori error estimate for a modified weak Galerkin method solving elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2017, 33(1):381-398.

    [7]

    LIU Liping, LIU Tang, K AŘÍŽEK M. Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type[J]. SIAM Journal on Numerical Analysis, 2004, 42(4):1729-1744.

    [8]

    BI Chunjia, GINTING V. Global superconvergence and a posteriori error estimates of the finite element method for second-order quasilinear elliptic problems[J]. Journal of Computational and Applied Mathematics, 2014, 260(2):78-90.

    [9]

    ARIOLI M, GEORGOULIS E H, LOGHIN D. Convergence of inexact adaptive finite element solvers for elliptic problems. RAL-TR-2009-021[R].Didcot UK:Rutherford Appleton Laboratory,2009.

    [10]

    CIARLET P G. The finite element method for elliptic problems[M]. North-Holland, Amsterdam,1978:10-15.

    [11]

    BI Chunjia, LIN Yanping, YANG Min. Finite volume element method for monotone nonlinear elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2013, 29(4):1097-1120.

    [12]

    XU Jinchao. Two-grid discretization techniques for linear and nonlinear PDEs[J]. SIAM Journal on Numerical Analysis, 1996, 33(5):1759-1777.

    [13] 王烈衡,许学军.有限元方法的数学基础[M].北京:科学出版社,2004:116-123. WANG Lieheng, XU Xuejun. Mathematical foundations of the finite element method[M]. Beijing:Science Press, 2004:116

    -123.

    [14]

    CARSTENSEN C, VERFÜRTH R. Edge residuals dominate a posteriori error estimates for low order finite element methods[J]. SIAM Journal on Numerical Analysis, 1999, 36(5):1571-1587.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  1179
  • HTML全文浏览量:  63
  • PDF下载量:  8
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-10-23
  • 修回日期:  2017-04-22
  • 发布日期:  2017-10-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭