小数据量情境下的滑坡位移非线性变化预测模型

赵明霞, 李庆富

赵明霞, 李庆富. 小数据量情境下的滑坡位移非线性变化预测模型[J]. 信阳师范学院学报(自然科学版), 2017, 30(4): 521-525. DOI: 10.3969/j.issn.1003-0972.2017.04.002
引用本文: 赵明霞, 李庆富. 小数据量情境下的滑坡位移非线性变化预测模型[J]. 信阳师范学院学报(自然科学版), 2017, 30(4): 521-525. DOI: 10.3969/j.issn.1003-0972.2017.04.002
ZHAO Mingxia, LI Qingfu. Prediction Model to the Slope Displacement Nonlinear Changing Under the Small-Data Situation[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017, 30(4): 521-525. DOI: 10.3969/j.issn.1003-0972.2017.04.002
Citation: ZHAO Mingxia, LI Qingfu. Prediction Model to the Slope Displacement Nonlinear Changing Under the Small-Data Situation[J]. Journal of Xinyang Normal University (Natural Science Edition), 2017, 30(4): 521-525. DOI: 10.3969/j.issn.1003-0972.2017.04.002

小数据量情境下的滑坡位移非线性变化预测模型

基金项目: 

平顶山学院青年科研基金重点项目(20120017)

河南省科技发展计划项目(132400410641)

详细信息
    作者简介:

    赵明霞(1967-),女,河南平顶山人,副教授,主要从事数学建模及其应用研究.

  • 中图分类号: P642.2

Prediction Model to the Slope Displacement Nonlinear Changing Under the Small-Data Situation

  • 摘要: 为得到小数据量情境下滑坡位移非线性变化趋势的准确估计,融合广义回归神经网络学习速度快、预测精度高和pGM (1,1)模型减小数据随机性并能增强规律性的建模优势,建立了基于pGM (1,1)模型和广义回归神经网络的滑坡位移组合预测模型.两个工程实例与以往研究结果的对比结果,验证了所建模型可行、有效.
    Abstract: In order to get an accurate estimate of the landslide displacement nonlinear changing trends under the small-data situation, a model based on the pGM (1,1) and generalized regression neural network was proposed. The new model integrates the advantages of the generalized regression neural network learning speed, high prediction accuracy and the pGM (1,1) model of reducing of the data randomness and enhancing the regularity. Comparing two engineering examples using the new model with the results of the previous studies, it was shown that the new method was feasible and effective.
  • [1]

    ZHOU Chao, YIN Kunlong, CAO Ying, et al. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology, 2016, 204:108-120.

    [2] 张俊,殷坤龙,王佳佳,等.基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J].岩石力学与工程学报,2015,34(2):382-391.

    ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):382-391.

    [3]

    LIU Zaobao, SHAO Jianfu, XU Weiya, et al. Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches[J]. Landslides, 2014, 11(5):889-896.

    [4]

    JIANG Ping, CHEN Jiejie. Displacement prediction of landslide based on generalized regression neural networks with K-fold cross-validation[J]. Neurocomputing, 2016, 198(S1):40-47.

    [5]

    CHEN J J, ZENG Z G, JIANG P, et al. Deformation prediction of landslide based on functional network[J]. Neurocomputing, 2015, 149:151-157.

    [6]

    LIAN C, ZENG Z G, YAO W, et al. Multiple neural networks switched prediction for landslide displacement[J]. Engineering Geology, 2015, 186(S1):91-99.

    [7]

    YAO Wei, ZENG Zhigang, LIAN Cheng, et al. Training enhanced reservoir computing predictor for landslide displacement[J]. Engineering Geology, 2015, 188:101-109.

    [8] 周超,殷坤龙,曹颖,等.基于诱发因素响应与支持向量机的阶跃式滑坡位移预测[J].岩石力学与工程学报,2015,34(2):4132-4139.

    ZHOU Chao, YIN Kunlong, CAO Ying, et al. Displacement prediction of step-like landslide based on the response of inducing factors and support vector machine[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2):4132-4139.

    [9] 周超,殷坤龙,黄发明.混沌序列WA-ELM耦合模型在滑坡位移预测中的应用[J].岩土力学,2015,36(9):2674-2680.

    ZHOU Chao, YIN Kunlong, HUANG Faming. Application of the chaotic sequence WA-ELM coupling model in landslide displacement prediction[J]. Rock and Soil Mechanics, 2015, 36(9):2674-2680.

    [10] 彭令,牛瑞卿,吴婷.时间序列分析与支持向量机的滑坡位移预测[J].浙江大学学报(工学版),2013,47(9):1672-1679. PENG Ling, NIU Ruiqing, WU Ting. Time series analysis and support vector machine for landslide displacement prediction[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(9):1672-1679.
    [11] 戈海玉,涂劲松.边坡位移预测的非线性组合模型及应用[J].岩土力学,2011,32(6):1808-1812.

    GE Haiyu, TU Jinsong. Nonlinear coupled model for predicting slope displacement and its application[J]. Rock and Soil Mechanics, 2011, 32(6):1808-1812.

    [12] 马文涛.基于灰色最小二乘支持向量机的边坡位移预测[J].岩土力学,2010,31(5):1670-1673.

    MA Wentao. Forecasting slope displacements based on grey least square support vector machines[J]. Rock and Soil Mechanics, 2010, 31(5):1670-1673.

    [13] 杨永波,刘明贵,岳向红,等.基于灰色理论和神经网络的边坡位移预测[J]. 自然灾害学报,2008,17(2):138-143.

    YANG Yongbo, LIU Minggui, YUE Xianghong, et al. Prediction of slope displacement based on gray model and neural network[J].Journal of Natural Disasters, 2008, 17(2):138-143.

    [14] 吴益平,滕伟福,李亚伟.灰色-神经网络模型在滑坡变形预测中的应用[J].岩石力学与工程学报,2007,26(3):632-636.

    WU Yiping, TENG Weifu, LI Yawei. Application of grey-neural network model to landslide deformation prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):632-636.

    [15] 唐波,彭友仙,陈彬,等.基于BP神经网络的交流输电线路可听噪声预测模型[J].信阳师范学院学报(自然科学版),2015,28(1):136-140. TANG Bo, PENG Youxian, CHEN Bin, et al. Audible noise prediction model of AC power lines based on BP neural network[J]. Journal of Xinyang Normal University(Natural Science Edition), 2015, 28(1):136-140.
    [16] 严磊,刘好斌,雷邦军,等.基于灰色广义回归神经网络模型的城市耕地面积预测[J].地理与地理信息科学,2012,28(3):111-112.

    YAN Lei, LIU Haobin, LEI Bangjun, et al. Urban land area forecast based on model of gray generalized regression neural network[J]. Geography and Geo-Information Science, 2012, 28(3):111-112.

    [17]

    WANG Xiaojun, YOU Mingshuang, MAO Zhizhong, et al. Tree-Structure ensemble general regression neural networks applied to predict the molten steel temperature in ladle furnace[J]. Advanced Engineering Informatics, 2016, 30(3):368-375.

    [18] 李树峰,陈志丹.pGM(1,1)模型权值p的精确求解及其性质分析[J].统计与决策,2009(21):153-154. LI Shufeng, CHEN Zhidan. The exact solution and properties analysis of pGM(1

    ,1)model of weight p[J]. Statistics and Decision, 2009(21):153-154.

    [19] 严磊,毛凤梅,雷邦军,等.农机总动力预测的灰色神经网络新方法[J].中国农机化学报,2013,34(3):45-47.

    YAN Lei, MAO Fengmei, LEI Bangjun, et al. A new machinery total power forecasting method based on grey neural network[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(3):45-47.

    [20] 刘道华,张飞,张言言.一种改进的RBF神经网络对县级政府编制预测[J].信阳师范学院学报(自然科学版),2016,29(2):265-269. LIU Daohua, ZHANG Fei, ZHANG Yanyan. A prediction for the preparation of county government based on improved RBF neural networks[J]. Journal of Xinyang Normal University(Natural Science Edition), 2016, 29(2):265-269.
  • 期刊类型引用(1)

    1. 陈勇,李鹏,张忠军,聂海福,沈鑫. 基于PCA-GA-LSSVM的输电线路覆冰负荷在线预测模型. 电力系统保护与控制. 2019(10): 110-119 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  996
  • HTML全文浏览量:  54
  • PDF下载量:  4
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-01-06
  • 修回日期:  2017-06-23
  • 发布日期:  2017-10-09

目录

    /

    返回文章
    返回