一种低噪声高增益CMOS混频器设计

The Design of a Low-noise and High-gain CMOS Mixer

  • 摘要: 基于TSMC 0.18μm CMOS工艺,设计了一种低噪声、高增益的混频器.通过在吉尔伯特单元中的跨导级处引入噪声抵消技术以降低混频器的噪声,并且在开关管的源级增加电流注入电路以减小本振端的偏置电流,增大电路的增益.仿真结果表明,混频器工作电压为1.8 V,直流电流为9.9 mA,在本振(LO)频率为2.39 GHz,射频(RF)频率为2.4 GHz时,混频器的增益为12.65 dB,双边带噪声系数为4.23 dB,输入三阶交调点为-3.45 dBm.

     

    Abstract: Based on TSMC 0.18 μm CMOS technology, a low-noise and high-gain mixer was designed. The mixer has a Gilbert cell configuration that employs lownoise transconductors designed using noise-cancelling technique. The current-bleeding technique was also used so that a highgain can be achieved. Simulation results indicated that the mixer exhibits a conversion gain of 12.65 dB, a double-sideband noise figure of 4.23 dB, a thirdorder intermodulation intercept point of 3.45 dBm with a consumption of 9.9 mA at 1.8V when the local-oscillator (LO) frequency is 2.39 GHz and the radiofrequency frequency is 2.4 GHz.   

     

/

返回文章
返回