一类具有饱和发生率和分布时滞的HIV 感染模型的全局稳定性分析

Global Dynamics of an HIV Infection Model with Saturation Incidence and Distributed Delays

  • 摘要: 建立了一类具有饱和发生率和分布时滞的 HIV 感染模型, 给出了病毒感染再生数 R0和 CTL 免疫再生数 R1 , 证明了: 当 R0≤1 时, 未感染平衡点是全局稳定的; 当 R01 R1时, 无免疫感染平衡点是全局稳定的; 当 R11 时, 免疫感染平衡点是全局稳定的.

     

    Abstract: An HIV infection model with saturation incidence and two distributed delays was considered. The basic reproduction numbers for viral infection and for CTL immune response were obtained. It was proved that the infection⁃free equilibrium is globally stable if R0≤1; the infected equilibrium without immune response is globally stable if R0 1 R1 ; and the infected equilibrium with immune response is globally stable if R1 1.

     

/

返回文章
返回