一个新的求解无约束优化问题的超记忆梯度法

汤京永, 田会宇

汤京永, 田会宇. 一个新的求解无约束优化问题的超记忆梯度法[J]. 信阳师范学院学报(自然科学版), 2013, 26(3): 324-326. DOI: 10.3969/j.issn.1003-0972.2013.03.004
引用本文: 汤京永, 田会宇. 一个新的求解无约束优化问题的超记忆梯度法[J]. 信阳师范学院学报(自然科学版), 2013, 26(3): 324-326. DOI: 10.3969/j.issn.1003-0972.2013.03.004
Tang Jingyong , Tian Huiyu . A New Super-memory Gradient Method for Solving Unconstrained Optimization Problems[J]. Journal of Xinyang Normal University (Natural Science Edition), 2013, 26(3): 324-326. DOI: 10.3969/j.issn.1003-0972.2013.03.004
Citation: Tang Jingyong , Tian Huiyu . A New Super-memory Gradient Method for Solving Unconstrained Optimization Problems[J]. Journal of Xinyang Normal University (Natural Science Edition), 2013, 26(3): 324-326. DOI: 10.3969/j.issn.1003-0972.2013.03.004

一个新的求解无约束优化问题的超记忆梯度法

基金项目: 

河南省教育厅科学技术研究重点项目(13A110767)

详细信息
    作者简介:

    汤京永( 1979-) ,男,山东泰安人,讲师,博士,主要从事优化理论与算法的研究.

  • 中图分类号: O221.2

A New Super-memory Gradient Method for Solving Unconstrained Optimization Problems

  • 摘要: 提出一个新的求解无约束优化问题的超记忆梯度法.该算法在每步迭代中充分利用前面迭代点的信息产生下降方向,利用曲线搜索产生步长,并且在每步迭代中不需计算和存储矩阵,适于求解大规模优化问题.在较弱的条件下证明了算法具有全局收敛性和线性收敛速度.数值实验表明该算法是有效的
    Abstract: A new super-memory gradient method for solving unconstrained optimization problems was proposed. A new search direction was generated by using the current and previous multi-step iterative information in the proposed method, and the step-size at each iteration was defined by a curve search rule, which can be used to solve large scale unconstrained optimization problems because it avoids the computation and storage of some matrices. Furthermore, the global convergence and the convergence rate of the new algorithm were proved under some weak conditions. Finally, numerical results showed that the proposed algorithm is effective
  • [1] 袁亚湘,孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社,1
    [2] 汤京永,秦金华,董丽. 无约束优化的超记忆梯度法及其全局收敛性[J]. 信阳师范学院学报: 自然科学版,2008, 21( 1) : 12-14.
计量
  • 文章访问数:  808
  • HTML全文浏览量:  47
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-24
  • 发布日期:  2013-07-09

目录

    /

    返回文章
    返回