欧氏空间中超曲面上的渐近曲线

  • 摘要: 由三维欧氏空间中的局部微分几何知,曲面上的渐近曲线有许多有趣的性质,其中有两个性质:1~0曲面∑上一条曲线Г既是曲率线又是渐近曲线的充要条件是:Г是一条平面曲线,而且它所在平面沿着Г和∑相切;2~0设Г为∑上一条异于直线的渐近曲线,则Г为∑上曲率线的一个充要条件是:Г为平面曲线.本文将这两条性质推广到n+1维欧氏空间中的超曲面上去,得到与这两条性质完全类似的两个定理.在证明这两个定理之前,先引进三个引理.

     

/

返回文章
返回