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0　 In troduction

Over the past decade, a number of models ( see [ 1～7 ] )

have been developed to describe the immune system, its inter2
action with H IV, and the decline in CD4 + T cells. These models

consider the dynam ics of the CD4 + T cell and virus popula2
tions. In this paper, we introduce a population of uninfected tar2
get cells, T, and p roductively infected cells, I, the virus concen2
tration, V. A lthough the population dynam ics of target cells

(CD4 + T cells) is not comp letely understood. Nevertheless, a

reasonable model for this population of cells is

T
·

= s - dT + aT (1 - T / Tm ax ) , (1)

where T is the number of target cells, s rep resents the rate at

which new T cells are created from sources within the body,

such as the thymus, a is the maximum p roliferation rate of tar2
get cells, Tm ax is the T population density at which p roliferation

shuts off, d is death rate of the T cells. If the oppulation ever

reaches Tm ax it should decrease, thus we impose the constraint

dTm ax > s. Equation (1) has a single stable steady state given by

T
^

=
Tm ax

2a
[ a - d + ( a - d) 2 + 4as / Tm ax ]. (2)

In the p resence of virus, T cells become infected. The sim2
p lest and most common method of modelling infection is to aug2
ment(1) with a“mass2action”term in which the rate of infection

is given byβTV, withβ being the infection rate constant. This

type of term is sensible, since virus must meet T cells to infect

them and the p robability of virus encountering a T cell at low

concentrations (when V and T motions can be regarded as inde2
pendent) can be assumed to be p roportional to the p roduct of

their concentrations, which is called linear infection rate. Thus,

in what follows, the classical models assume that infection oc2
curs by virus, V, interacting with uninfected T cells, T, causing

the loss of uninfected T cells at rate -βTV and the generation

of infected T cells at rateβTV.

W e investigate the viral model with linear infection rate in

the following. The model can be written as

T
·

= s - dT + aT (1 - T / Tm ax ) -βTV,

I
·

=βTV -δI,

V
·

= pI - cV.

(3)

where T is the number of target cells, I is the number of infec2
ted cells, V is the viral load of the virions, s rep resents the rate

at which new T cells are created from sources within the body,

a is the maximum p roliferation rate of target cells, Tm ax is the T

population density at which p roliferation shuts off, d is death

rate of the T cells, β is the infection rate constant, δ is the loss

rate constant of infection cells, p is the rep roductive rate of the

infected cell, and p /δ is the total number of virions p roduced by

a p roductively infected cell during its lifetime, c is the clear2
ence rate constant of free virions.

1　Stab ility ana lysis and permanence

System ( 3 ) always has non2negative equilibria E1 ( T
^
, 0,

0) , E2 ( T, I, V ) , where

　　T
^

=
Tm ax

2a
[ a - d + ( a - d) 2 + 4as / Tm zx ],

　　T =
cδ
pβ

, I = [ s - d T + a T (1 - T / Tm ax ) ] /δ,

V = p[ s - d T + a T (1 - T / Tm ax ) ] / (δc) .

Let

　Rece ived da te: 2005211206

　Founda tion item : Supported by the NSF of Henan Province (0511012800) and the NSF of Education Bureau of Henan Province

　B iography:WANG Hao (19632) , male, native of Xiyang of Shanxi p rovince, associate p rofessor, specialization in biomathematics.

252

信阳师范学院学报 (自然科学版 ) Journal of Xinyang Normal University

第 19卷 　第 3期 　2006年 7月 (Natural Science Edition) Vol. 19 No. 3 Jul. 2006



　　R0 =
T
^

T
=

pβTm ax

2acδ
[ a - d + ( a - d) 2 +

4as
Tm ax

].

which is called the basic rep roductive ratio of system ( 3). W e

can see that R0 is a bifurcation parameter.

The Jacobian matrix of E1 ( T
^
, 0, 0) is

J ( E1 ) =

a - d -
2a T

^

Tm ax

0 -βT
^

0 -δ βT
^

0 p - c

,

Its characteristic equation is

(λ + ( a - d) 2 + 4as / Tm ax ) [λ2 +

　　 (δ+ c)λ +δc - pβT
^

] = 0. (4)

Thus, E1 ( T
^
, 0, 0) is locally asymp totically stable for T

^
< T, and

is a saddle point with dimW u ( E1 ) = 1, dimW s ( E1 ) = 2, for T
^

> T.

W e can see that R0 is a bifurcation parameter. W hen R0 <

1, the uninfected steady state E1 is stable and the infected

steady state E2 does not exist ( unphysical). W hen R0 > 1, E1

becomes unstable and E2 exists. Thus, the basic rep roductive

number R0 determ ines the dynam ical p roperties of system ( 3)

over a long period of time.

Standard and simp le arguments show that solutions of the

system (3) always exist, stay positive and boundedness.

The Jacobian matrix of E2 ( T, I, V ) is

J ( E2 ) =

a - d -
2a T
Tm ax

-βV 0 -βT

βV -δ βT

0 p - c

,

Its characteristic equation is

λ3 + b1λ
2 + b2λ + b3 = 0, (5)

here

b1 =δ+ c + d - a +
2a T
Tm ax

+βV =δ+ c +M ,

b2 = (δ+ c) ( d - a +
2aT
Tm ax

+βV ) = (δ+ c)M ,

b3 =δcβV > 0, M = d - a +
2a T
Tm ax

+βV.

IfM > 0, then b1 > 0, b2 > 0, we have

b1 b2 - b3 = (δ+ c) 2
M + (δ+ c)M

2 -δcβV.

By Routh2Hurwits Criterion, we know that

Theorem 1　If

( i) R0 > 1,

( ii) a < d,

( iii) b1 b2 - b3 = (δ+ c) 2M + (δ+ c)M 2 -δcβV > 0.

Then the positive equilibrium E2 ( T, I, V ) is locally asymp toti2
cally stable.

It is to see that solution of the system (3) always exist and

stay positive. Indeed, as is obvious for system (3) , we have

lim
t→∞

sup T ( t) ≤T
^

=

　　
Tm ax

2a
[ a - d + ( a - d) 2 + 4as / Tm ax ].

Then there is a t1 > 0 such that for any sufficiently smallε

> 0, we have

T ( t) ≤T
^

+ε, for t > t1. (6)

Theorem 2　There is anM 1 > 0 such that for any pos2
itive solution ( T ( t) , I ( t) , V ( t) ) of system (3) ,

I ( t) <M 1 , V ( t) <M 1 , for all large t.

Proof　SetV1 ( t) = T ( t) + I ( t) . Calculating the deriv2
ative of V1 ( t) along the solutions of system (3) , we find

V
·

1 ( t) = s - dT ( t) + aT ( t) (1 - T ( t) / Tm ax ) -δI ( t) =

　　 - dT ( t) -δI ( t) + aT ( t) - aT2 ( t) / Tm ax + s≤

　　 - hV1 ( t) +M 0 ,

here h =m in ( d,δ) , M 0 = ( Tm ax a2 + 4as) /4a. Recall that T ( t)

≤T
^

+ε, for all t > t1. Then there exists an M 2 , depending only

on the parameters of system (3) , such that V1 ( t) <M 2 , for t >

t1. Then I ( t) has an ultimately above bound. It follows from the

third equation of Eq. ( 3 ) that V ( t) has an ultimately above

bound, say, their maximum is an M 1. ø
Define

Ω = { ( T, I, V ) : 0≤T≤T
^
, 0≤I≤M 1 , 0≤V≤M 1 }.

Theorem 3　Under the assump tion R0 < 1, the local

stability of E1 ( T
^
, 0, 0) imp lies its global stability inΩ.

Proof　From the last two equations of Eq. (3) , for t >

t1 , we have

I
·

≤βT
^
V -δI, 　V

·

= pI - cV. (7)

Consider the following equations

u
·

1 ( t) =βT
^

u2 ( t) -δu1 ( t) ,

u
·

2 ( t) = pu1 ( t) - cu2 ( t) .
(8)

Since R0 < 1, then pβT
^

<δc. Obviously, for any solution of (8)

with nonnegative initial values we lim
t→ +∞

ui ( t) = 0, i = 1, 2. Let 0

< I (0) ≤u1 (0) , 0 < V ( 0 ) ≤u2 ( 0 ) . If ( u1 ( t) , u2 ( t) ) is a

solution of system (8) with initial value ( u1 ( 0) , u2 ( 0) ) , then

by the comparison theorem we have I ( t) ≤u1 ( t) , V ( t) ≤

u2 ( t) for all t > t1 , and lim
t→ + ∞

I ( t) = 0, lim
t→ +∞

V ( t) = 0.

For anε∈ (0, 1) sufficiently small, there exists t2 = t2 (ε)

such that for t > t2 ,

s -βT
^
ε+ ( a - d) T - aT

2
/ Tm ax ≤T

·
≤

　　s + ( a - d) T - aT
2

/ Tm ax.

Thus lim
t→ +∞

T ( t) = T
^
. ø

Theorem 4　System ( 3) is permanent p rovided R0 >

1.

Proof　W e begin by showing weakly persistence of sys2
tem (3). If it is not weakly persistence, it follows from the p roof
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of Theore 3 that there is a positive orbit ( T ( t) , I ( t) , V ( t) ) of

(3) such that

lim
t→ + ∞

T ( t) = T
^
, lim

t→ + ∞
I ( t) = 0, lim

t→ + ∞
V ( t) = 0.

Since R0 > 1, then T
^

>
δc
pβ

, we can chooseε > 0 small enough

such that

T
^

-ε>
δc
pβ

, (9)

Then choose t0 > 0 large enough such that if t≥t0 , we get

　　　　
I
·

( t) ≥β( T
^

-ε) V ( t) -δI ( t) ,

V
·

= pI( t) - cV ( t) .
(10)

Considering the matrix Aε defined by

-δ　β( T
^

-ε)

p　　 - c
.

Since Aε adm its positive off2diagonal element, Perron2Frobenius

Theorem imp lies that there is positive eigenvector v = ( v1 , v2 )

for the maximum eigenvalueα1 of Aε. Moreover, by (9) , we see

that the maximum eigenvalueα1 is positive.

W e consider that

　　　　
u
·

1 =β( T
^

-ε) u2 -δu1 ,

u
·

2 = pu1 - cu2.
(11)

Let u ( t) = ( u1 ( t) , u2 ( t) ) be a solution of system ( 12 )

through ( lv1 , lv2 ) at t = t0 , where l > 0 satisfies lv1 < I ( t0 ) , lv2

<V ( t0 ) . Since the sem iflow of (12) ismonotone and Aεv > 0,

it follows that ui ( t) is strictly increasing and ui ( t) → + ∞, as t

→ + ∞, contradicting the eventual boundedness of positive so2
lution of (3). Thus, no positive orbit of (3) tends to ( T

^
, 0, 0)

at t→ + ∞. This shows that system ( 3) is weekly persistent.

Then an app lication of the techniques of paper [ 8 ] concludes

the permanence of(3). ø
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一类具有线性感染率的病毒模型的动力学性质
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摘 　要 :考虑了一类带有线性感染率的病毒模型 ,分析了解的有界性 ,平衡点的性质 ,系统的持续生存

性及稳定性 1
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