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Abstract: The vertex operator structure on the representation V,, of untwisted affine algebra associated with

S/l(_n\éj is studied by using the representation theory of Lie algebra. Moreover it is proved that V,, is a vertex operator

algebra according to the calculus methods of formal distributions and then the conformal vector on the vertex algebra

V, is given.
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0 Introduction

The physicists brought forward the concept of vertex
operation algebra in studying the theory of field and string. It
is important in studying reprensention theory and finite
group. Meurmen and Lepowsky sloved the Guss of
Mckay-Thompson with this theory. And Borcherds used the
vertex operation algebra and Kac-Moody Lie algebra to slove
the famous problem of the Monstrous Moonishine Conjecture
and won fields award in 1998. Frenkel and Kac '? had
constructed the level-one representations of affine Kac-Moody

algebras A" D" ED g ED

n

by means of vertex
operators in 1981.In addition Xu and Jiang® have

introduced another set of vertex operators in 1990 which are

Vo

643000)

Vo
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constructed for the level-one representations of the cases B!"
and GY". Xu* gave the level-one representations of the
affine Lie algebras with first kind in 1991.

Using these vertex operators to construct a vertex
operator algebra has been an important subject of study. The

representations V, of Kac-Moody Lie algebra associated to

Si(2 are constructed which are based on a certain
untwisted or twisted vertex operators and it is proved to be a
vertex operator algebra in Ref. 5 . In this paper we use
the vertex operators of affine Lie algebra A\" with first kind
to construct vertex operator algebras. But Jacobi identity for

the definition of vertex operator algebra is very complicated.

We instead it with the axiom of locality to construct vertex
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operator algebra.

1 Untwisted vertex representation V,, of
A(l)

n
In this section we briefly introduce the structure of V,
and vertex operators Y( v z) on V.
Let B(x y) be the Killing form of a finite dimensional
complex simple Lie algebra SI(n C). Let #'(dim(4) = n)
be a Cartan subalgebra of SI( n C) and A be the root system.

Then Sl(n C) = 4 + Zga g, is the root subspace

aecl

decomposition of g by the Cartan subalgebra 4. Denote IT =
{a, " a,} C4 asimple root system where / is the dual
space of 4.

The root lattice

L:{o¢:2‘mio¢l|ml wom, e Z} C 4, (1)
i=1

is an abelian addition group in the real linear space /; . Then
Ay has an inner product (x y) = ¢,B(x y) Vx y e 4
where ¢, is a positive constant. The group algebra C( e") of L
is an abelian associative algebra with the basis {e®| a € L}
where ¢ = 1 and e® = e***,

Denote hy(m) =" ®a, meZ l<i<n X, (a) =
" ®e, Ya € A wheretis a complex parameter. Let S be
the complex linear space spanned by the basis

1 h(-m) meZ 1<i<n

Denote S(S™) be the symmetric tensor algebra over C
generated by S™ with the product V. Then S(S7) is a
commutative associated algebra with the unit element 1 and

has a basis

1 hil( -my) VoV his( -m,)
l<si<--<i<nm m el sel.

Let V.= S(S7) ® C(e").

finite or infinite elements of the basis forms a complete space

The formal linear combination of
V, of V. Tt is well known that V,, is an associative algebra with
(hy (=m) Vo Vb (-m)) ®e =

(1®e)

. . 5
Hence the representation space V has a basis 1 @ ¢ (A, ( -

(hy(=m ®e"). (2)

s
k=1

s

Vi (-m)) @ =(1®¢) [T((h,(-m)

k=1

my) Vo

®e") whereBe L 1 <i, <
s =12 -
For any u ® €* e V, the degree of u ® ¢# is defined by

<i<nm - m el

1
deg(u ® €?) = deg(u) +7(B B)
where deg( u) is defined by
deg(1) =0
* 422 -

deg( h.’]( -m) VoV hi_‘( -m,)) = zmk'
i=
Now we introduce some linear operators acting on V for
the definition of the vertex operator representation of the

affine Lie algebra vertex operator algebra and vertex

algebra.
(1) Let D:V, — V, be a linear operator which is
defined by
D(v®e) =deg(v @) (v ® ). (3)

(M) Let 9,y 1 < i < nm e Z be the linear

)
differential operators acting on the linear space S(S7)
which are defined by

a},i(mi) ( h,'( - m,) ) =

miam,’ —mj’( Q; a/) m; m; € 7. (4)
Let o;(m;) be a linear operator acting on V, which is

defined by
a(-m) (v @) = (h(-m;) V1) ®e whenm, e Z*
0(0) (1 @) = (o B(r®F)
w(m)(r®€) = Inmy (1) ® ¢ whenm, e Z*
where v € S(S7) ¢ e C(€").
Lemma 1
a(m) o(q) =
m;s,, ,qj( o, o)id m; q; € Z. (5)
Proof This formula has been easily proved *7 . |

n

Let @ = 2 a;a; € L. The linear operator o m) acting

i=1

on V is defined by

a(m) = Zaia,»(m) Vm e Z.

By the induction we have

Lemma 2 Let

afm) = Zl,a,-a[( m) Blq) = D ba(q)

then |
alm) Bld = md,., ol a B)id (6)

Particularly

exp(a(m)) exp(B( -m)) =

exp(m(a B)) exp(B( - m)) expl ol m) )

(III) The mapping &:L x L — {1 0 < 6 < 2w} is
called the g-mapping if £ satisfies the following conditions:

() o(0p) =e(BO) =1 VB el

(i) e(ap) =(-1)"“?e(Ba) YapBel

(iii) e(B+y &) e(By) =e(Ba+y)e(y @) Va
Byel

(iv) Let x(« 2) : C(e") — C(€") be a linear operator
which is defined by

a2 (v®e) =elay) " (v@e™). (7)



Sl(n

v,

Let X( a 2)

™ be the Laurent series of z.

Z X,(a

Then
X(az)(v®e) =
E'(a2)E (az2x(az)(v®e) =

> < > =2 a(m)) -

—a( —m)) exp( Y,

m=1 m=1

ela y) 3 (v ® ™).

Theorem 1 The vertex operator representation (p V) of

LN

affine Lie algebras with the first kind can be defined on the

generators by

p(c) =id
) =D
o | (3)
p(I"®a;) =a(m) l<sisnmel
p(i" ®e,) =X, (a) a e A melZ

This theorem is proved in Ref. 8 .In this case the

multiplication table of the affine Lie algebra is

idD = ida(m = idX,(d =0
D a(m = ma(m

DX,(d =mX,(a)

a;(m) oy =md, (o «a;)id

=(a a) X, 4(a)
(

o —a)(a(m+k) +

X (o) X,(B =0aBeAa+Be¢AU{0}
X,(a) X(B =éelap)X,  (a+p)
a B a+BeA

2 The structure of vertex algebra on V,

Definition 1 A complex linear space V is called a vertex
algebra if there exist a set of linear operators ( every linear

operator is called a field) for v:

Y(v2z) = zv(m)zf

mel

e EndV oz z" (9)

such that given any v w € V there is a positive integer m, =
my( v w) such that v, (w) =0 Ym > m; And there is a
fixed vector | 0) e V which is called by the vacuum vector
such that

(i) ( vacuum)

Y(10)2) =id, Y(vz)10)I._,

(ii) ( translation convariance)

T e End( V) is defined by T(v) = v | 0) Yvel
if Tis a

derivation on V and satisfies the condition: ad( T) = g, acting

® e 2).

.

T is called the infinitesimal translation operator

on any linear operator Y( u
(iii) (locality)
There exists a positive integer N such that
Y(uz) (vw =0VYuvel
This definitions is the same as that in Refs. 940 .

(z-w)"

Define the map Y( + 2) 1V, — (EndV) =z z!

2 v,z27""" by the following way:

el
Y(1z) = idy();
Y(h(-1) ®12) =H(z) = Y H(m)z"";
et
Y(h(-m) @12 =0""H(2);
Y(1®e*) =X(az) =E" (a2)E (a2)x(az);
Y(hy (=my) Voo Vb (-m) @1 2) =
" VH, (2) "™V H, (2) 1
Y(h,(=m)VVh (-m) ® # ) =
29 TVH, (2) "V H () V(1@ 2)
where : *: is the normal order of fields or operators 9'™
m”!L is a differential operator and the vacuum vector | 0) =1
®e.

In the following we shall check that (V Y(v ® e* 2))

is a vertex algebra i.e. it satisfies the three axioms of the
vertex algebra.
2.1 The vacuum axiom
(1) M1®1 2 =idy,;
(2) Y(h(-m) ®1 1@ 11y = h
(3) (v ®e* )1 ®I1I., =v®e"

This formula can be easily proved by Theorem 1.

-m) ®1;

2.2 The translation covariance axiom
Definition 2 Let

v = Hh
Then
T(v®e) =y(-1)(v

zml. =T +m)) (v, ®e).
T is a derivation which acts on V,,. Particularly
T(1e) =y(-1D(1®e)
T(h(-m) ®1) mh,(-m-1) ® 1.

Lemma 3 Giveni =1 2 -

- +
-m,) v, = h,»/,( -m;) m; e Z".
1<j<5 j#h

®e") +

nmeZ, m>0ael
then

i) ad(Na(-m) =ma(-(1 +m));

i) ad(7) a(1) (v®e™) =-(a a+y) (v@®e"7);
i) ad(7) a(m) =-ma(m -1);

iv) ad(Tx(a 2) =af -1)x(a 2).

®

z m— l

(
(
(
(

(v) ad(T) E* (& 2) =

@

(vi) ad(T) E™ ( 2 "l

Maa+y))E (a2);
E(ad Taxaz (v®e€) =(al-1) -
N (aa))E (a2)x(az)(v®e).

Proof The formulas (i-ii v) is easily proved "' . Now

we only check the formulas (iv) .
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(1) E" (a3) = ad(7) [Jespl Lera( = m) = (ad(1) Yu@e)) 3™ VM (2) -+
. = " Yu®e) (ad(7) 9" " H,(2) ) =
> TTexelL=a( - m)ad( 7)) - V(=) Vu®e) +
; ((ad(7) ~a) 8™ Hy(2) ) V(u®e) +
expl el =) T]expl ) <"al = m)) = V(u®e®) (ad(T) - 0) 0" i, (2) ).
= o Hence we need to prove that
E* (a 2) Z/a( -(1+)). ((ad(T) -a)a ™V H (2).,) u@e) +
Hence (iv) holds. O Y(u®e®) ((ad(T) -a.) 0" H,(z) ) =0
Lemma 4 The infinitesimal translation operator T From the formulas (i) and (iii) it is easy to prove that
satisfies the translation covariance axioms ((ad(7) -9,) a(moil) H, (Z) .) =0
THo®e) =Y (v®e). (10) ((ad(7) -a.) 8" " H,(2) ) =0.
Proof Since 9, is a differential operator acting on Y( u ®) Hence ( 10) holds. O
¢%) about z then 2.3 The locality axiom
a(Y(1®e 2))(v®e) = In this subsection we check the locality axiom. Namely
a~( E+ ( @ Z) E- ( a Z) x( a Z) ) (1} ® ey) — we will prove the fOllOWil’lg formula holds.
0(E (a2))E (az)xasz) + (z-w)" Y(;@&;) v®d) =0
E'(a2)d(E (az))x(az) + L Vu?ey(v(@e)e V(l)z)wj;i W - 1) | w)
emma an w
E'(a2)E (a2 (x(az2))(v®e) = are local i e. ® ®
E (a9 iz’”*‘a( ) iz*mw m + (:-w)" Yh(-1) @12 Yh(-D) @1 =0
- - Proof Notice that
a ) E (a ) (0.3(a k) : Yh (-1 @1 Y(h(-1) @10 =
By the formulas (iv) (V) and( ) of Lemma3 we have 2 H(m) H(n I
Y(I®e" 2) (v®e) = net el
T E'(a2E (azx(az) (vQe) = (e B) z;mz_m_]w_m_] = (a; B)9,8(z - w).
( TE (a3 E (a2x(asz) + By the formula (iv) of Lemma 3 it is easy to prove
E'(agd TE (a3 x(az) + (z-w)” Y(h(-1) ®1 Y(h(-1) @1 0 =
E'(a)E (agd Talaz J(v®e) = (e B)(z-w)’9,8(z~w) =0.
B (a9 izma( )+ izf,ﬂa( - Lemma 6 > Y( h.( - ) ®1 2) and Y(h( -n) @1
m=1 m=1 z) arelocal i.e. (z-w)"™ Y(h(-m) ®1 2) Y(h(-
T ay))E (a2)x(az)(v®e). n) @1 W =0,
Therefore Proof Since
CTHes s =aliied ). V(h(=m) ®12) - V(h(-n) @1 w) =
It is easy to see that Y(h(-n) @1 w) - Y(h(-m) @1 2) +
TY(h(-m) ® I =a(Y(h(-m @ 2)) = v
by the formulas (ii) (iv) and (vi) of Lemma 3. By the (o o) mz:()zmwﬂwnfnj :
induction we have (m+m, =1)!'(m+m +n —1)!
TYor®e 3 =a(Vov® 2)) m!(m, =1) ' (m -m)!(n -1)!
and (=m-m) ‘luj( n) +
THe® ) = (u@e ) (0 @) 3
where u = thk( - m,). Then (n+m +n -1 (n+n -1)! .
ad(?’)Y(hi(—m() Vau®e z) = (n+n)!(m -1)!nl(n -1)!
ad(1) 530 () W u @ ) © = Lo el
; mo=1) o en
fi(ﬂ( H,(2) . ( ®e)) + Y(h(-m) @12 - Y(h(-n) @1 u) -
d((T)( ( ® ))a O(Z)— Y(hj(—n])®1w)'Y( ( )®1Z) —
(ad(7) 0"V H,(2) ) Nu®e") + =
9"V H, (), ad(T) Y(u ®e“) + (o a) (3=t -
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v,

(n+m +n -1)!
(m, = 1) 'nl(n, —1) 1"

@

mi) -

(m+m; +n, —1)!

2 T Tt (= 1y 1)) =

m=0

(mi+nj—1)! .
(o) )1, 1)

3

(n+m +n; —1)!

n-mi-nj n »
( ";Z w nl ( m; +n; - 1) I (‘L,,,i( m,)
< + +n -1
T LR L
m=0 m! (m; + n - DA
By the formula (iv) of Lemma 3 we have (z -

w) " V(h(-m) ®12) Y(h(-n) ®1 W =0
Lemma 7 Y(h, ® 1 2) and ¥Y(1 ® e* w) are local i.
e. (z-w)" Y(h,®1 2 Y(1®e w =0.
Proof Since

Y(h ®12) =H(z) = X H(m):""

i
melZ

then
H(m) Y(1®e 0w =w"(a a¥(1l®e" w)
and
Y(h, ®1 2) Y(1®e* 1) =8(z-w) Y(1Re"* w).
Therefore (z-w) Y(h,®12z) (1 ®e* W =0.
Lemma 8 Y(1®e" 2) and Y(1®e® w) are local i.
e. (z-w)" V1®e 2 YI®FL w =0
Proof Since Y(1®e" 2) = E' (a2)E (a 2)x(a
z) we have
V(1 ®e IV ®L w) =
2(a2)x(B w) E(az)E(az) *
B (BE (B2) =
2P (2 —w) P a(a2)x(B w)
E'(a2)E" (B 2)E) -
E'(B2E (az)E (B2).
By the same way we get
VIR 2)Y1R®e w) =
(B W) x(a ) B (B ) B (B ) E' (ad) -
E (a2 =
w P (w-2) P x(Bwa(a)E (a2 *
E*(B2)E (a2)E (B32).
From the definition of mapping & "
2P (2 —w) Py ) (B w) =
w P (- 2) “P (B w) (a2
V(1T®e 2) 1®PL w =0
If a(z) b(z) and ¢(z)

mutually local fields then a(z) (,) b(2) and ¢(z) are mutually

we have

ie. (z-w
Lemma 9 " are pairwise

local fields for all n e Z(resp.n e Z).In particular
c2(2) b(z2):
a(z) b(z) and ¢(z) are.

Lemma 10 For any u Q) e* v ) ¢® e V,, there exists a

and: ¢( z) : are mutually local fields provided that

nonegative integer N which satisties

(z-w)" V(u®e" 2) (v® v =0.
Proof From the Lemmas 5-8 we know that Y( h,( - 1) ®
1 2) Y(h(-m) ®1) and ¥Y(1®e") are pairwise mutually
local fields.
Lemma 10.
From the fact that we have checked that (V Y(v &) e“

z) ) satisfies the three axioms. It follows

Theorem 2 (V Y(v ® e” z)) is a vertex algebra.

Then by the Lemma 9 we can easily prove

3 The conformal vector of the vertex
algebra

Definition 3 A conformal vector of a vertex algebra V

is an even vector v such that the corresponding field

Y(v2) = ZL"z( 2

ey
is a Virasoro field with cetral charge ¢ which has the following

properties:
(a) L, =T
(b) L, is diagonalizable on V.
The number is called the central charge of v.
LetA = ((o o)) o= (ay)

matrix. Let

v = %Za/kHj( SDH(-1)10)

then A is a symmetric

then

=1 nel

%zgﬂ%mmwm+
%i)$Am—mmm+
() B~ )

L o=Ly a,(H(-n—-1)H(n) +

n

Lo = %Z Z‘Z.fAHf(”)Hg(m—n) m # 0.

TT ez
In the following we will prove that L, satisfies the above
properties (a) and (b) .

By the define of L, we have

L1®Y) =5 T aH(0)H0)(10) =

(BRI (1)

. 425 -



4 : http: //journal. xytc. edu. cn 2012 10

m(a; a) b(-m) @1) =mh(-m) @1 (12) Li(1®e) =af-1)(1®e)

Then by the inductive method so and

Li(hy(=m) V= Vh(-m) @) = Li(h(-m) @1) =m(h(-m) ®1).

By the define of T we prove that L_, satisfies the above

(my + o +m + (B B)) -
(h(=m) V= VA(=m) @)

properties (b) i.e.L_, = T.
The field Y(v z) = ZL"z( ™2 s a Virasoro field

Thus L, satisfies the above properties (a) i.e.L, is net

diagonalizable on V. and(V Y(v ®e" 2)) is a conformal vertex algebra.

By the define of L_; we have
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