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Abstract: Weakly-abelian rings were investigated. A series of new characterizations and properties on this kind of

rings were given and some known results were generalized. The relations between weakly-abelian rings and other clas—

ses of rings were discussed.
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0 Introduction

Throughout this paper, all the rings are associa—
tive rings with an identity. Let E( R) ,C( R) ,N( R)
and J( R) denote the set of all idempotents, the cen—
ter of R, the set of all nil element of R and the Jacob-
son radical of R, respectively. For any subset X of R,
[(X) and r( X) denote the left annihilators and right
annihilators of X respectively. We call a ring R an a—
belian ring if E( R) CC(R) . It is well known that R
is abelian if and only if eR( 1 —e) =0 for each e e
E(R) . Many authors have generalized abelian rings
to lager classes of rings. Yu'" induced quasi-duo ring
and Chen'” induced semiabelian ring. A ring R is
called left ( right) quasi-duo ring, if every maximal
left( right) ideals are ideals, and quasi-duo ring is

the ring which is both left and right quasi-duo ring. A
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ring R is called semiabelian if eR(1 —¢) =0 or (1 -
e) Re =0 for each e € E( R) . Abelian rings are quasi—
duo rings and semiabelian rings, while the converse is
not true. According to Ref. [3 ],a ring R is said to be
weakly-abelian if eR( 1 —e) CJ(R) for each e e
E(R) , it is also proved that abelian ring, quasi-duo
rings and semiabelian rings are weakly-abelian, and
gave examples to show that the converse is not held.
Since weakly-abelian rings contain a larger class
of rings having extensive properties, we continue the
study of weakly-abelian rings in this paper. We intro—
duce the subset A,( R) ={alea=a(1l -e) ( mod
J(R)) for some ec E(R)} of R, with which to give
some new characterizations of weakly-abelian rings.

Many known results can be obtained as corollaries.
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1 Main Results

Definition 1 A ring R is called weakly-abelian
if eR(1—¢) CJ(R) for every ec E(R) .

Let A;( R) be the subset {alea=a(1 —e)
(modJ(R)),decE(R)} in R.

Theorem 1 The following statements are equiv—
alent for a ring R:

(1) R is weakly-abelian;

(2) A,(R) CJ(R):

(3) For each aeR,ea =a(1 —e) for some e e
E(R) implies a e J(R) .

Proof (1) =(2).
(ea) =ea(1 —e) =0( modJ( R)) since R is weakly—
abelian. Similarly,

(1-e)a=0( modJ(

Thus, a=ea+(1-e)aecJ(R).

(2) =(3). For each ae R,ea =a(1 —e) for
some ee E(R) ,aeA,(R) CJ(R).

(3)=(1). Leta=er(1-¢), then ea=a(1 -
e) , thus a e J(R) .

For each aeA,( R) ,ea =¢

R)).

Therefore R is weakly-abelian.
(|

Theorem 2  The following statements are equiv—
alent for a ring R:

(1) R is weakly-abelian;

(2) aee J(R) implies ea € J( R) for each e e
E(R) ,aeA,(R);

(3) eae J(R) implies ae € J( R) for each e e
E(R) ,aeA,(R);

(4) aRe C J(R) for each e €e E(R) ,a €

A/(R);

(5) eRa C J(R) for each e e E(R) ,a €
A/(R);

(6) aee J( R) implies eaRe C J( R) for each e

eE(R) ,aeA,(R);

(7) eae J(R) implies eRae C J( R) for each e
eE(R) ,aeA,(R);

(8) For each ee E(R) ,re € J(R)
erA;(R) eCJ(R);

(9) For each e e E( R) ,er € J( R) implies
eA,(R)reCJ(R).

Proof (1) =(2), (3), (4).(5),(6),
(7), (8), (9) is clear by Theorem 1. It is suffice
to show (2), (4), (6), (8) =(1), and we can
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implies

get (3), (5), (7), (9)=(1) similarly.

(2) =(1). For each ec E(R) ,reR,let

a=er(l-e) eA/(R),0=aeeJ(R),
then ea =er(1 —¢) € J(R). Thus R is weakly-abe—
lian.

(4) =(1). For each a € A;(R) ,ae,a(1 —e)
eJ(R).Then a=ae+a(l-e) €J(R).

(6) =(1). Foreachec E(R) ,reR,let a =er
(1-¢) €eA)(R).0=aeeJ(R), thener(1 —e) Re
CJ(R) ,thus eR(1 —e) ReC J( R). By [1, Theorem
1.2.1],R is weakly-ablian.

(8) =(1). Foreachee E(R) ,reR,er(1 —e)
e=0eJ(R) ,and for each r, e R,

(1-e)rieeA;(R).

Then,er(1 —e) ryee J(R) , thus

eR(1 -e) ReCJ(R).

By [1, Theorem 1.2.1 ],R is weakly-ablian. -

Let NJ(R) ={rlr" e J(R)}. It is clear that
N(R) CN,(R) ,and if N,(R) CJ(R), then R is
weakly-abelian, which can be obtained as a corollary
of the next theorem:

Theorem 3  The following statements are equiv—
alent for a ring R:

(1) R is weakly-abelian;

(2) aN,(R) eCJ(R)for eachee E(R) ,ae
AJ( R);

(3) eN,(R) aCJ(R) for eachee E(R) ,a e
AJ( R);

(4) rN,(R) eCJ(R) for each ee E(R) ,reR;

(5) eN,(R) rCJ(R)for each ec E(R) ,reR.

Proof (1) =(2) to (5) is clear by Theorem
1. It is suffice to show (2) ,(4) =(1) , and we can
get (3) ,(5) =(1) similarly.

(2) =(1). Foreach aeA,(R) , let

ea=a(l-e) ,eeE(R),

a(l-e)reecalN,(R)eCJ(R)
for each re R. Then 0=a( 1 -e) re=eare. By Theo-
rem 4, R is weakly-abelian.

(4) =(1). ForeachaeA;(R) ,eeE(R) , we
have aN,(R) e C J( R) . Clearly, R is weakly-abe—
lian. O

Corollary 1 The following statements are e—
quivalent for a ring R:

(1) R is weakly-abelian;
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(2) aN(R)eCJ(R) for each e E(R) ,a e
A]( R);

(3) eN(R) aCJ(R) for each e E(R) ,a e
A]( R);

(4) rN(R)eCJ(R) for eachec E(R) ,reR ;

(5) eN(R) rCJ(R) for each ec E(R) ,reR.

Let [,(a) ={blbae J(R)} ,r;(a) ={blabe
J(R) }. Obviously,l(a) Cl,(a) ,and r(a) Cr,(a).

Theorem 4 The following statements are equiv—
alent for a ring R:

(1) R is weakly-abelian;

(2) al,(a) CJ(R) for eachaecA,(R);

(3) r,(a)aCJ(R) for each acA,(R).

Proof It is clear that (1) =(2) ,(3). It suf-
fice to show (2) =( 1), and (3) =(1) can be got
similarly. (2) =(1). For each ee E(R) ,reR,(1
—e) el(er(1 -e)), thuser(1 —¢e) eal(a) C
J(R). O

Corollary 2 The following statements are
equivalent for a ring R:

(1) R is weakly-abelian;

(2) al(a) CJ(R) for each aeA,(R);

(3) r(a)aCJ(R) for each acA,(R).

Theorem 5 The following statements are equiv—
alent for a ring R:

(1) R is weakly-abelian;

(2) [,(a) Cr,(a) for eachaeA,(R);

(3) r)(a) Cl)(a) foreach acA,(R).

Proof It is suffice to show (2) =(1). For
eachee E(R) ,reR, since er(1 -¢e) €A,(R) , and
l-eel(er(1-e)) Cr,(a), thus

er(1-e) eJ(R).
Therefore R is weakly-ablian. |

Corollary 3 The following statements are
equivalent for a ring R:

(1) R is weakly-abelian;

(2) l(a) Cr(a) for eachaeA,(R);

(3) r(a) Cl(a) for eachaecA,(R);

(4) l(a) =r(a) for eachaeA,(R);

(5) [,(a) =r,(a) foreachaeA,(R).

Theorem 6 The following statements are equiv—
alent for a ring R:

(1) R is weakly-abelian;

(2) abce J(R) implies bac € J( R) for each a,

b,ceA,(R);

(3) abe J(R) implies ba € J( R) for each a,b
€A,(R);

(4) abe J(R) implies aRb C J( R) for each a,b
eA,;(R).

Proof (1)=(2), (2)=(3). Clearly.

(3) =>(4). Let abe J(R) , then bar € J( R)
for each re R, thus arbe J(R) .

(4) =(1). ForeacheeE(R) ,reR, leta=er
(1-e), thena’=0eJ(R), and aRaC J( R) , then
a=er(1-¢) eJ(R).
lian. -

Therefore, R is weakly-abe—

Next as the applications of weakly-ablian proper—
ties,we will discuss the relations among weakly-abe—
lian rings and other rings. According to Cohn'*' | R is
called reversible if ab =0 implies ba =0 for each a,b
e R. According to Lembek SR s called symmetric
if abc =0 implies bac =0 for each a,b,c e R. Ander-
son-Camillo'® used the term ZC, and ZC, to denote
reversible rings and symmetric rings respectively. It is
well known that R is symmetric if and only if r;r,*=*r,
=0 implies r, 7, ***7,(, =0 for any permutation
o over the set {1,2,:-,n} and r,,r,, ", 7, € R
( Krempa :7]) . R is semicommutative if ab =0 implies
aRb =0 for each a,b € R. And R is called reduced
ring if > =0 implies a =0 for each a € R. Reduced
rings are symmetric, symmetric rings are clearly re—
versible, reversible rings are semi-commutative, and
semi-commutative rings are abelian( Huh[si) .

Let R be a ring with N,( R) C

A,(R) . Then the following statements are equivalent:

Theorem 7

(1) R is weakly-abelian;
(2) R/J(R) is reduced,;
(3) R/J is symmetric;
(4) R/J
(5) R/J
Proof (1) =(2),(2)=(3),(3) =(4),
(4) =(5) , clearly. It is suffice to show (5) =(1).
For each ee E( R) ,e(1 —e) =0 e J(R) ,thus
eR(1-e) CJ(R).

—_—

R)
R) is reversible;
R)

1s semi-commutative.

Therefore, R is weakly-abelian.
(|
Recall that a ring R is called semiabelian, if eR
(1-¢) =0 or (1 —e) Re =0 for each e € E( R) .
Then we can get a characterization of abelian rings:
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Theorem 8§ The following statements are equiv—
alent for a ring R :

(1) R is abelian;

(2) R is semiabelian, and aRe =0 implies eRa
=0 for each ee E(R) ,acA,(R);

(3) eA;,(R) (1 —e) =0 for each ec E(R) .

Proof (1) =(2). Clearly.

(2) =(3). If there exists e € E(R) ,a €
A;(R) ,ea(1 —e) #0, then ea( 1 —¢) Re =0 and
therefore ecea( 1 —e) =ea(1 —e) eeRea(1 —e) =0
by hypothesis, a contradiction. Hence

eA,(R) (1-¢) =0.

(3) =(1). For each ee E(R) ,eR(1 —e) =e
(eR(1-e))(1-e) CeAd;(R)(1-e) =0. Hence R
is abelian. |
Let R be a ring with N,( R) C
A,(R) . Then the following statements are equivalent:

(1) R is weakly-abelian;

(2) Rb+R(ba-1) =R for each ae N,(R) ,b

Theorem 9

eR;

(3) For each maximal left ideal M,a € N,( R)
implies Ma C M.

Proof (1) =(2). Letae N,(R),beR
Suppose Rb + R( ba — 1) # R, then there exists a
maximal left ideal M such that Rb + R( ba — 1) C M.
By Theorem 5,a e N,( R) CJ(R) CM, then ba e M.
Since ba —1 € Rb + R(ba —1) CM, then 1 e M, a
contradiction. Therefore, Rb + R( ba —1) =R.

(2) =(3) . If there exist a maximal left ideal M
and a € N,( R) such that Ma @M, then M + Ma =R,
and there exist m,n € M such that m + na =1. By
(2), R=Rm + Rn C M, which is a contradiction.
Therefore the conclusion follows.

(3)=(1).
(1-¢) €eJ(R), so there exists a maximal left ideal
M and r € R such that Mer( 1 —e) CM. Note that er
(1-¢e) eN)(R), by (3),Mer(1-e) CM, which is

a contradiction. Hence, R is weakly-abelian. -

If R is not weakly-abelian, then eR
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