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Abstract: A class of more general delayed viral infection model with lytic mmune regponse is proposed based on

me important biological meanings The aufficient criteria for local and global agmptotic stabilities of the viral free

equilibrium are given, and the sufficient conditions of local agmptic stability of the infected equilibrium are given

oa And the effectsof time delay on stabilities of the viral infection model have been studied
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0 Introduction

The research of mathematical models can provide insights
into the dynamics of viral load in vivo and is very helpful for
clinical treatment The population dynamicsof target cells is not
campletely understood Nevertheless, a reanable model for
this population of cells is

Xk (1 -2 (1)
dt Xnax

where x(t) is the number of susceptible T cells s represents
the rate atwhich nev T cells are created by proliferation of ex-
isting T cells Here we represent the proliferation by a logistic
function in which k is the maximum proliferation rate of target
cells x, is the T population density at which proliferation
shutsoff d isdeath rate of the T cells

Recently, there has been a lot of pagperson virus dynamics
within-host, sme include the immune regponse directly! *'. In
order © investigate the role of direct lytic and nonlytic inhibi-
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tion of viral replication by immune cells in viral infections Bar-
tholdy et al'™ and Wodarz et al'® constructed a mathematical
model describing the basic dynamicsof the interaction betveen
usceptible host cells a virus population, and immune re-
gonke By the smilar theoretical analysis o population dynan-
ical systansand epidemic modeld®! time delays should be con-
sider in viral models® , and Buric’ et all”! considered the effects
of the time delay for mmune regponse on two-dimensional sys-
tem which oonsists of infected cells and CTLs and Kaifa
Wang® studied the effects of the time delay for immune re-
gons on the three-dimensional systan with z=cy(t-T) -
bz In this pgoer, we consider the followving model with delay
betveen the time a cell begin © be infected and the time of e-
mission of virus particles fran this cell
X=s- dx+kx(1-:x) -Bxy,
> (2)

yBe™ x(t-1)y(t-T) - ay- pyz
Z=oy- bz

Received date: 2008-10-16; Revised date: 2009-05-07; *. Corresponding author, E-mail: jiangkisovu@163 com
Foundation item: National Natural Science Foundation of China(10771179)
Biography: JANG Xiaowu (1963-) , fenale, bom in Gushi of Henan,M aster, pecialization in biamathematics

332-



where y(t) is the number of virus population and z(t) is the
number of mmune reponses usceptible host cells became in-
fected by virus at rate of3 xy; infected cells die at a rate ay and
killed by the mmune system at a rate pyz for modelling lytic ef-
fector mechanisns the lytic immune regponse is activated at a
rate proportional o the number of infected cells, cy, and al®©
decays exponentially at a rate proportional t its current
strength, bz Inmodel (2) the tem e ™ acoounts for the propor-
tion of infected cellswhich still aliveT time units later

1 Prelm naries

W e denote by C the Banach gace of continuous functions

@:[-1,0] -R’ with nom
ol = 30 (19,6) 1,1, 0) 1 »:0) 1},
where® = @,,9,,9;). Further, let

C, ={¢ =@,.9,,9,) C®,>0foralld
=1, 2, 3.

The initial condition for systen (2) is given as

x@) ©,0),y6) =9,6),20) =9,6), -1<6<
0, (3)
where@ = @,,0,,95).

Lenma 1l Suppose that (x(t),y(t), z(t)) isa Dlution
of systam (2) with initial conditions(3) , then x(t) = 0, y(t) =
0,z()=0forall t=Q

The possible non-negative equilibria of systam (2) are viral

[ -T,0],i

free equilibriun E, = (%, 0, 0) and infected equilibrium E, =
(_ x,_y, 2) , where

Xnax o\ e ,4ks
><o—2k[k d+ ((k-d) +Xn )

ax

2_-nT
kB kB Be
o o X

- 54
- 2 - '
ok Be
Xnax Y
< _b xe™ - a
y - ,
2= (4)

The basic reproductive number is given as

a

Be™ +ak(l-——)
R, = Bxpe”
ad
Lemma 2 For any lution (x(t), y(1), z(9)) of (4),
we have that
. Xnax 2 ,_4ks
J'Jl ap x(t) < x :_Zk [k-d+ [(k-d) +>$nax]'

L enma 3
R, <1=Bxe™ - a<0,
Ry =1=Bxe™ - a=0,
R, >1=Bxe™ - a>Q

Now,we will begin to analysis the geametric properties of
the equilibria of systan (2). Let E be any arbitrary equilibrium
of systan (2). Then te characteristic equation about E is given

by
A +b) A +a+pz) A +d-k+%(+[3 y) +

ax

oy & +d-k+2T"X+B y) B x +

ax

b) & +d- k+%() e™ e =a (5)

ax

2 Stability analysis of the viral free equi-

librium E,

In this section, we shall consider the stability for the infec-
tion free equilibrium E, of systan (2). We have the folloving
main reuults

Theorem 1 If Ry, <1, then the viral free equilibrium E,
is locally agympotically stable for any tme delayt = 0, If R, >
1, then the viral free equilibrium E, isunstable; fR, =1, itisa
critical case

Proof For equilibrium E, (%, 0, 0), transcendental e

quation (5) reduces

Aot A +d- k) Q4
Xnax

a-Bxe™e™) =0 (6)
It is clear that the transcedental equation (6) has negative
roots
A 1=-D
No= - (4 ko) = g7 el
Xmax Xnax

and from Lenma 3, we have thath ; Bx,e™ - a<0, forR, <
1 Hence,when R, <1 the viral free equilibrium E; is locally
asmpTtically stable for any time dealyt = Q

If R, >1, byLenma3we can see thath ; Px,e™ - a>
0, then E, isunstable Therefore our reaults in this theoram are
proved

Theorem 2 If Ry < 1, then the viral free equilibrium E,
of systam (2) is globally ag/mptotically stable for any time delay
T=20

Proof Define

G={0 =@1.9,.93) G. [%=2¢0,2009,20¢,=0}.
Fron Lanma 2, we see that G attracts all lutions of (2). For
aye = @,,9,9;) G let (x(1),y(1), z(1)) be the lu-
tion of (2)with the initial function(3). Thenwe can clam that
for any t= 0 x(t) £ %. Hence, G is a positively invariant with
repect 0(2). If R, <1, let us define a functional W on G as
follows,

Q
W (1) =@,(0) +n I(pzca)@, (7
333-



22 3

htip: //joumal xytc edu cn 2009 7

heren >0 isa constant © be chosen later It isclear thatw (t)

is continuouson the subset G in G,. Fram the invariance of G,

for any® G, the slution (x(t), y(t), z(t)) of (2)with the
initial function(3) satisfies x (t) < x, for any t= Q It follows
fram (2) and (7) that

W (1) <@, (-T) Bxe™ -n) -
®,(0) (a-n) - ¥, (09, (0).
By R, <1,we can choosen such thatBx,e™ < <a Hence,
we have that

WD) o< -0, (0095(0), (8)
forany@ G Hence,W @ ) isaL ygounov function on the sub-
%t G in G,. The classical L ygounov-L aSalle invariance princi-
pal shaws that (%, O, 0) is globally attractive Since it has been
shown that, if Ry <1, (%, 0, 0) is locally asymptically stable
for any time delayt = Q Hence, (%, 0, 0) is globally agmpoti-
cal stability for any time delayt = Q

If R, =1, let us consider the folloving function on G,
Q
W) =92 (0) +Bxe™ [0.6)8. (9)

Clearlyw (t) is al® continuouson subset G in C,. Fran the
invariance of G, for any@ G, the lution (x(t), y(t), z(t))
of (2) with the initial function(3) satifies x (t) < x, for all t>
Q Fram (2) and (9) ,we al® have that

Wip Be™@, (1) @.(-T) - %) -
©,(0) (a-Bxe™) - @, (0)9;(0).

ByR, =1 and x(t) < x, for all t>0, we have thatW |,
< - ®,(00,(0), forany® G Hence,W @) is aL ygunov
function on the subset G in G,. By the same proof as the case
of Ry <1, we can show thatwhen R, =1 the viral free equilibri-
um E, isalo globally agympotically stable for any time delayt
> Q Hence, (%, 0, 0) is globally asmptically stable for any
time delayT = Q Thus Theoran 2 isproved

3 Stability analysis of the nfected equilib-

rium E

In this section we shall regardT as a parameter © study
the stability of the infected equilibrium E,.

The characteristic of the linearized system of (2) near the
infected equilibrium E; is given by

PAT) +QQ T)e™ =0, (10)

where

PAT) A+ @A’ +bCA +by (),

QA.T) =b @A+ @A +h ),

and

(11)

b () =(b4B xe™) +(d- k+in—"x+8'y),
b () =(b+8 xe™) (d- '”in_kX*B_y) "

ax
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(B xe™ +cpy),
b @) = (d- k+in—"X+B'y> (Bxe™ +cpy),

h@)=-Bxe™,
2K x

b @) =-(b+d-k+@)ﬁ'xe'”‘,
h)=-Bxe™ (d- k+2£%).
Xn

Whent =0, the equation (10) becames\ * +a, (0)A 2 + &, (0)
A +a; (0) =0, where
a (0) =b, (0) +hb, (0) =b+d- k+iﬂ_kx+ﬁ_y>O,

ax

2,(0) =b, (0) +h, (0) =
d- k+iﬂ—kx+ﬁ_y+0p_y+82_x_y,

ax

3 (0) =b; (0) +hk (0) =
2k_x

B2 xy+cpy(d- k™ By >Q

ax

W e alo have
s 2kXx o~
3 (0) & (0) - & (0) =hcpy+(d- k+)%n #HBy) (b+
d- ke 2Ty 4875y >

By Routh-Humitz criterion, we have the folloving Theoran 3
IfT =0 and R, >1, then the infected equi-
librium E; is locally agmptically stable
Ift =0 and R, >1, then the infected equi-

librium E, is globally agmptically stable

Theorem 3
Theorem 4

Proof Define aLyapunov functionV = (x -_x Inx) + (y
“yiny) +—2QC (z- 2% WhenT =0, calculating the derivative
of V along the olutionsof system (2) ,we find

V() = -2 (x- 0 -:kax(x-_x)z -—bf(z-_z)z.
Thus V< 0 and V' =0 if and only if x = x, z= z By L aSalle'in-
variance principle,whent =0, any lution of systan (2) tends
oM,whereM C{ (x, vy, 2 |x =_x, z=_z} is the largest invariant
ubset of systan (2). By the third equation of (2) we can se
thatM ={ E,} isa singleton st Follows fran L aSalle’invariance
principle and Theorem 3, the infected equilibrium E; is globally
agmptically stablewhent =0 and R, >1

Fort >0, we have the following results
fR,>1,8 @) >0,a @) >0, and & ()
>0, then the infected equilibrium E,; is locally agmptically
stable

Pr oof

Theoren 5

Fran Theorem 3, we have that any root of (10)
has negative real part fort =Q

A = (@ >0) be a root of equation (10) , and fram
which we have

- b ) +b @) = - by € )0 siwA + (b €)0* -



by ) ) cost,

- b @)W = - (b @)W - by [)) siwx -
by (T ) cost . (12)
Letw? =h, we have
F(h) =K +ah +ah+a, =0, (13)
where

, = - 2cpy + (d- k+AX+B 72,

2kX n- - -
& =(d- k+?x+l3 y) (- 20py) +opy +

2B xe™) %% ye™ [2(d- k+)§k) Byl,
& =(h€)-h€)) [cpy(d- k+2—"X+B y) +
B e ( -k+2—kX+B 3!

We can e that if a, @ ) >0,a2(r) >0, and a3 (T ) >0, then
F (h) >0, which contradicts F (h) =Q This shows that all the
roots of the characteristic equation (10) have negative real parts
for any tme delay This completes the proff of Theorem 5
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