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Stab ility Ana lysis for a D elayed V ira l Infection M odel w ith L ytic Imm une Respon se
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Abstract:A class of more general delayed viral infection model with lytic immune response is p roposed based on

some important biological meanings. The sufficient criteria for local and global asymp totic stabilities of the viral free

equilibrium are given, and the sufficient conditions of local asymp totic stability of the infected equilibrium are given

too. And the effects of time delay on stabilities of the viral infection model have been studied.
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一类具有溶菌性免疫反应的时滞病毒感染模型的稳定性分析
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摘 　要 :基于一些重要的生物学意义 ,提出一类更常见的具有溶菌性免疫反应的时滞病毒感染模型 1给出了无感染平

衡点的局部和全局渐近稳定性的充分条件 ,还得到感染平衡点的局部渐近稳定性的充分条件 1并且研究了时滞对该病毒

感染模型的稳定性影响 1
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0　 In troduction

The research of mathematical models can p rovide insights

into the dynam ics of viral load in vivo and is very helpful for

clinical treatment. The population dynam ics of target cells is not

comp letely understood. Nevertheless, a reasonable model for

this population of cells is

dx
d t

= s - dx + kx (1 -
x

xmax

) , (1)

where x ( t) is the number of suscep tible T cells, s rep resents

the rate at which new T cells are created by p roliferation of ex2
isting T cells. Here we rep resent the p roliferation by a logistic

function in which k is the maximum p roliferation rate of target

cells. xmax is the T population density at which p roliferation

shuts off. d is death rate of the T cells.

Recently, there has been a lot of papers on virus dynam ics

within2host, some include the immune response directly[ 1 - 5 ]. In

order to investigate the role of direct lytic and nonlytic inhibi2

tion of viral rep lication by immune cells in viral infections, Bar2
tholdy et al[ 1 ] and Wodarz et al[ 3 ] constructed a mathematical

model describing the basic dynam ics of the interaction between

suscep tible host cells, a virus population, and immune re2
sponse. By the sim ilar theoretical analysis to population dynam2
ical system s and ep idem ic models[ 6 ] time delays should be con2
sider in viralmodels[ 5 ] , and Buric’et al[ 7 ] considered the effects

of the time delay for immune response on two2dimensional sys2
tem which consists of infected cells and CTL s and Kaifa

W ang[ 5 ] studied the effects of the time delay for immune re2
sponse on the three2dimensional system with Ûz = cy ( t - τ) -

bz. In this paper, we consider the following model with delay

between the time a cell begin to be infected and the time of e2
m ission of virus particles from this cell.

Ûx = s - dx + kx (1 -
x

xmax

) -βxy,

Ûy =βe - mτx ( t -τ) y ( t -τ) - ay - pyz,
Ûz = cy - bz,

(2)

　Rece ived da te: 2008210216; Rev ised da te: 2009205207; 3 . Correspond ing author, E2mail: jiangxiaowu@163. com

　Founda tion item :National Natural Science Foundation of China (10771179)

　B iography: J IANG Xiao2wu (19632) , female, born in Gushi of Henan,Master, specialization in biomathematics.

·233·

信阳师范学院学报 :自然科学版 Journal of Xinyang Normal University

第 22卷 　第 3期 　2009年 7月 Natural Science Edition Vol. 22 No. 3 Jul. 2009



where y ( t) is the number of virus population and z ( t) is the

number of immune responses; suscep tible host cells become in2
fected by virus at rate ofβxy; infected cells die at a rate ay and

killed by the immune system at a rate pyz for modelling lytic ef2
fector mechanism s; the lytic immune response is activated at a

rate p roportional to the number of infected cells, cy, and also

decays exponentially at a rate p roportional to its current

strength, bz. In model(2) the term e - mτ accounts for the p ropor2
tion of infected cells which still aliveτ time units later.

1　Prelim inar ies

W e denote by C the Banach space of continuous functions

φ: [ -τ, 0 ]→R3 with norm

‖φ‖ = sup
- ≤θ≤0

{ |φ1 (θ) | , |φ2 (θ) | , |φ3 (θ) | } ,

whereφ = (φ1 ,φ2 ,φ3 ) . Further, let

C + = {φ = (φ1 ,φ2 ,φ3 ) ∈C:φi≥0 for allθ∈[ -τ, 0 ], i

= 1, 2, 3}.

The initial condition for system (2) is given as

x (θ) =φ1 (θ) , y (θ) =φ2 (θ) , z (θ) =φ3 (θ) , -τ≤θ≤

0, (3)

whereφ = (φ1 ,φ2 ,φ3 ) .

L emma 1　Suppose that ( x ( t) , y ( t) , z ( t) ) is a solution

of system (2) with initial conditions(3) , then x ( t) ≥0, y ( t) ≥

0, z ( t) ≥0 for all t≥0.

The possible non2negative equilibria of system (2) are viral

free equilibrium E0 = ( x0 , 0, 0) and infected equilibrium E1 =

( x, y, z) , where

x0 =
xmax

2k
[ k - d + ( k - d) 2 +

4ks
xmax

],

x =

- ( d - k -
abβ
cp

) + ( d - k -
abβ
cp

) 2 + 4s (
k

xmax
+

bβ2e - mτ

cp
)

2 (
k

xmax

+
bβ2e - mτ

cp
)

,

y =
b (βxe - mτ - a)

cp
,

z =
c y
b

. (4)

The basic rep roductive number is given as

R0 =

sβe - mτ + ak (1 -
a

βxmax e - mτ)

ad
.

L emma 2　For any solution ( x ( t) , y ( t) , z ( t) ) of (4) ,

we have that

lim
t→ +∞

sup x ( t) ≤x0 =
xmax

2k
[ k - d + ( k - d) 2 +

4ks
xmax

].

L emma 3

　　R0 < 1] βx0 e - mτ - a < 0,

　　R0 = 1] βx0 e - mτ - a = 0,

　　R0 > 1] βx0 e - mτ - a > 0.

Now, we will begin to analysis the geometric p roperties of

the equilibria of system (2). Let E
～

be any arbitrary equilibrium

of system (2). Then te characteristic equation about E
～

is given

by

(λ + b) (λ + a + pz
～

) (λ + d - k +
2k x

～

xmax

+β y
～

) +

cpy
～

(λ + d - k +
2k x

～

xmax

+β y
～

) -β x
～

(λ +

b) (λ + d - k +
2k x

～

xmax

) e - mτe -λτ = 0. (5)

2　Stab ility ana lysis of the v ira l free equ i2
libr ium E0

In this section, we shall consider the stability for the infec2
tion free equilibrium E0 of system ( 2). W e have the following

main results.

Theorem 1　 If R0 < 1, then the viral free equilibrium E0

is locally asymp totically stable for any time delayτ≥0; If R0 >

1, then the viral free equilibrium E0 is unstable; If R0 = 1, it is a

critical case.

Proof　For equilibrium E0 ( x0 , 0, 0 ) , transcendental e2
quation (5) reduces to

(λ + b) (λ + d - k +
2kx0

xmax

) (λ +

a -βx0 e - mτe -λτ) = 0. (6)

It is clear that the transcedental equation ( 6) has negative

roots

λ1 = - b,

λ2 = - ( d - k +
2kx0

xmax

) = - ( d - k) 2 +
4ks
xmax

,

and from Lemma 3, we have thatλ3 =βx0 e - mτ - a < 0, for R0 <

1. Hence, when R0 < 1 the viral free equilibrium E0 is locally

asymp totically stable for any time dealyτ≥0.

If R0 > 1, by Lemma 3 we can see thatλ3 =βx0 e - mτ - a >

0, then E0 is unstable. Therefore our results in this theorem are

p roved.

Theorem 2　 If R0 ≤1, then the viral free equilibrium E0

of system (2) is globally asymp totically stable for any time delay

τ≥0.

Proof　Define

G = {φ = (φ1 ,φ2 ,φ3 ) ∈G + | x0 ≥φ1 ≥0,φ2 ≥0,φ3 ≥0}.

From Lemma 2, we see that G attracts all solutions of ( 2). For

anyφ = (φ1 ,φ2 ,φ3 ) ∈G, let ( x ( t) , y ( t) , z ( t) ) be the solu2
tion of (2) with the initial function (3). Then we can claim that

for any t≥0 x ( t) ≤x0. Hence, G is a positively invariant with

respect to (2). If R0 < 1, let us define a functional W on G as

follows,

W ( t) =φ2 (0) +η∫
0

-τ
φ2 (θ) dθ, (7)
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hereη> 0 is a constant to be chosen later. It is clear thatW ( t)

is continuous on the subset G in G + . From the invariance of G,

for anyφ∈G, the solution ( x ( t) , y ( t) , z ( t) ) of ( 2) with the

initial function (3) satisfies x ( t) ≤x0 for any t≥0. It follows

from (2) and (7) that

W
·

( t) | (2) ≤φ2 ( -τ) (βx0 e - mτ -η) -

φ2 (0) ( a -η) - pφ2 (0)φ3 (0) .

By R0 < 1, we can chooseη such thatβx0 e - mτ <η < a. Hence,

we have that

W
·

( t) | (2) ≤ - pφ2 (0)φ3 (0) , (8)

for anyφ∈G. Hence,W (φ) is a Lyapunov function on the sub2
set G in G + . The classical Lyapunov2LaSalle invariance p rinci2
pal shows that ( x0 , 0, 0) is globally attractive. Since it has been

shown that, if R0 < 1, ( x0 , 0, 0) is locally asymp totically stable

for any time delayτ≥0. Hence, ( x0 , 0, 0) is globally asymp toti2
cal stability for any time delayτ≥0.

If R0 = 1, let us consider the following function on G,

W ( t) =φ2 (0) +βx0 e- mτ∫
0

τ
φ2 (θ) dθ. (9)

ClearlyW ( t) is also continuous on subset G in C + . From the

invariance of G, for anyφ∈G, the solution ( x ( t) , y ( t) , z ( t) )

of(2) with the initial function (3) satisfies x ( t) ≤x0 for all t >

0. From (2) and (9) , we also have that

W
·

| (2) =βe - mτφ2 ( -τ) (φ1 ( -τ) - x0 ) -

φ2 (0) ( a -βx0 e - mτ) - pφ2 (0)φ3 (0) .

By R0 = 1 and x ( t) ≤x0 for all t > 0, we have that ÛW | (2)

≤ - pφ2 (0)φ3 (0) , for anyφ∈G. Hence,W (φ) is a Lyapunov

function on the subset G in G + . By the same p roof as the case

of R0 < 1, we can show that when R0 = 1 the viral free equilibri2
um E0 is also globally asymp totically stable for any time delayτ

≥0. Hence, ( x0 , 0, 0) is globally asymp totically stable for any

time delayτ≥0. Thus Theorem 2 is p roved.

3　Stab ility ana lysis of the infected equ ilib2
r ium E1

In this section we shall regardτ as a parameter to study

the stability of the infected equilibrium E1.

The characteristic of the linearized system of ( 2) near the

infected equilibrium E1 is given by

P (λ,τ) +Q (λ,τ) e -λτ = 0, (10)

where

P (λ,τ) =λ3 + b1 (τ)λ2 + b2 (τ)λ + b3 (τ) ,

Q (λ,τ) = b4 (τ)λ2 + b5 (τ)λ + b6 (τ) ,
(11)

and

b1 (τ) = ( b +βxe - mτ) + ( d - k +
2k x
xmax

+βy) ,

b2 (τ) = ( b +βxe - mτ) ( d - k +
2k x
xmax

+βy) +

( bβxe - mτ + cp y) ,

b3 (τ) = ( d - k +
2k x
xmax

+βy) ( bβxe - mτ + cp y) ,

b4 (τ) = -βxe - mτ
,

b5 (τ) = - ( b + d - k +
2k x
xmax

)βxe - mτ
,

b6 (τ) = - bβxe - mτ ( d - k +
2k x
xmax

).

W henτ= 0, the equation (10) becomesλ3 + a1 (0)λ2 + a2 ( 0)

λ + a3 (0) = 0, where

a1 (0) = b1 (0) + b4 (0) = b + d - k +
2k x
xm ax

+βy > 0,

a2 (0) = b2 (0) + b5 (0) =

d - k +
2k x
xmax

+βy + cp y +β2 x y,

a3 (0) = b3 (0) + b6 (0) =

bβ2 x y + cp y ( d - k +
2k x
xm ax

+βy) > 0.

W e also have

a1 (0) a2 (0) - a3 (0) = bcp y + ( d - k +
2k x
xmax

+βy) ( b +

d - k +
2k x
xmax

+βy +β2 x y) > 0.

By Routh2Hurwitz criterion, we have the following Theorem 3.

Theorem 3　 Ifτ= 0 and R0 > 1, then the infected equi2
librium E1 is locally asymp totically stable.

Theorem 4　 Ifτ= 0 and R0 > 1, then the infected equi2
librium E1 is globally asymp totically stable.

Proof　Define a Lyapunov function V = ( x - x ln x) + ( y

- y ln y) +
p

2c
( z - z) 2

. W henτ= 0, calculating the derivative

of V along the solutions of system (2) , we find

ÛV ( t) = -
s

xx
( x - x) 2 -

k
xmax

( x - x) 2 -
bp
c

( z - z) 2
.

Thus, ÛV≤0 and ÛV = 0 if and only if x = x, z = z. By LaSalle’in2
variance p rincip le, whenτ= 0, any solution of system (2) tends

to M , where M < { ( x, y, z) | x = x, z = z} is the largest invariant

subset of system ( 2). By the third equation of ( 2 ) we can see

thatM = { E1 } is a singleton set. Follows from LaSalle’invariance

p rincip le and Theorem 3, the infected equilibrium E1 is globally

asymp totically stable whenτ= 0 and R0 > 1.

Forτ> 0, we have the following results.

Theorem 5　 If R0 > 1, a1 (τ) > 0, a2 (τ) > 0, and a3 (τ)

> 0, then the infected equilibrium E1 is locally asymp totically

stable.

Proof　From Theorem 3, we have that any root of ( 10)

has negative real part forτ= 0.

Ifλ = iω (ω > 0 ) be a root of equation ( 10 ) , and from

which we have

- b3 (τ) + b1 (τ)ω2 = - b5 (τ)ωsinωτ+ ( b4 (τ)ω2 -
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b6 (τ) ) cosωτ,

ω3 - b2 (τ)ω = - ( b4 (τ)ω2 - b6 (τ) ) sinωτ-

b5 (τ)ωcosωτ. (12)

Letω2 = h, we have

F ( h) = h
3 + a1 h

2 + a2 h + a3 = 0, (13)

where

a1 = b
2 - 2cp y + ( d - k +

2k x
xm ax

+βy) 2
,

a2 = ( d - k +
2k x
xm ax

+βy) ( b
2 - 2cp y) + cp y +

2bβxe - mτ) +β3 x2 ye - mτ [ 2 ( d - k +
2k x
xm ax )

+βy ],

a3 = ( b3 (τ) - b6 (τ) ) [ cp y ( d - k +
2k x
xm ax

+βy) +

bβxe - mτ ( - k +
2k x
xm ax

+βy) ].

W e can see that if a1 (τ) > 0, a2 (τ) > 0, and a3 (τ) > 0, then

F ( h) > 0, which contradicts F ( h) = 0. This shows that all the

roots of the characteristic equation (10) have negative real parts

for any time delay. This comp letes the p roff of Theorem 5.

4　Conclusion s

In this paper, a class of more general viral infection model

with time delay and lytic immune response is considered. The

delay between the time a cell begin to be infected and the time

of em ission of virus particles from this cell is taken into ac2
count. Then, a detailed analysis on the asymp totic stabilities of

the equilibrium of the viral infection model is carried out. It is

show that, if R0 < 1, the viral free equilibrium E0 is locally as2
ymp totically stable for any time delayτ≥0, and that, if R0 = 1,

the linearized system of the viral infection model at the E0 is

stable for any time delayτ≥0. Furthermore, it has also been

show that, if R0 ≤1, the viral free equilibrium E0 is globally as2
ymp totically stable for any time delayτ≥0. The results show

that, the time delay has no effect on both local and global as2
ymp totic p roperties of the viral free equilibrium E0 of the viral

infection model. If R0 > 1, then E0 becomes unstable and the in2
fected equilibrium E1 is locally asymp totically stable for some

conditions.
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