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Abstract: A delayed SIR epidemic model with saturated rate is introduced. The local stabilities of its equilibria as

well as the effects of delay on the reproduction number of the model are studied by constructing Lyapunov function.
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0 Introduction

Epidemiological models have been used to study
ecological and epidemiological phenomena extensivelyilgj.
Let S(¢) ,I(t) and R(1)

densities of susceptible,infective and recovered. We assume

be the respective population

that S(t) +1(t) + R(t) = N(t), a nonconstant population
with carrying capacity K( N(t) < K). These variables will
be normalized to N(¢) = 1, because most models assumed
the population in question is constant. In (4], a standard

SIR epidemic model takes the form
S(t) = -puS() -BS(0)I(1)
Ity =BS()I(1) —(uw+y)I(1), (1
R(1) =yI(1) -pR(1) ,

where parameters w,B,y are positive constants in which w is
the death rate and recruitment rate of some populations. All

newborns and immigrants are susceptible.
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Based on the Hethcote’ s model, we introduce our model

through  the incorporation of variable population,
disease-induced mortality and time delay of the infective
class into the classic model in [4]. Thus, we proposed the
following model in which d,the renewal or recruitment of
individuals through birth and/or immigration,is different
from the death rate u. So, we investigated the model with the
force of infection at any time ¢ given by

e SO I(L = 7)
R T

and the model has the following form:

g - - Cpenyr S I —T)
EE“) = d =S = e =

o SO I -7)
g(‘) R ey T

Sk = yi(o -ur(o)

(pryp iy, P
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where B denotes the per capita effective daily contact rate, w,
denotes the disease-induced death rate in the interval (0,7) ,
w is the death rate of the population (u, <) ,y denotes the
daily recovery rate of the infectious,7 denotes the time delay
of a full blown infection to take place and parameters d,u,
M1 B,y ,T are positive constants.

This means that infection is caused by infectious group,
infected 7 units of time earlier. However, not all those
infected will survive after 7 units of time, which suggested
the introduction of the survival term e ™1". This also implies
that there is an implicity define class, but for the sake of

simplicity and elucidation, we assume that the susceptible

and exposed groups are indistinguishable.

1 Boundedness and equilibrium

Now we show that all solutions of system (2) are
bounded by the idea of dissipativity.

Theorem 1 System (2) is dissipative.
Proof. Let (S(¢t) ,I(t) ,R(1))

non-negative initial condition ( S(0) ,/(0) ,R(0)).

be any solution with
Since
S(1) <d —uS(1) , then
limsupS(¢) < M,
where M = { S(0) ,K} ,K < o being the carrying capacity.
Now we consider the function
X(t)y =S8(t) +1I(t) +R(1),

then

X1 = d-w(S(t) +1(t) +R(1)) =d-puX(1).
By applying the theorem of Birkhoff and Rota® on
differential inequalities, we get

0<X(1) < xa + X(S(0) ,1(0) ,R(0))e™.

"

Thus, for t — «,0 < X(1) < i Therefore, all the
"

solutions of system (2) enter the region I' = {(S,/,R) e
Rl X < 4 + ¢ for any & > 0} , a compact invariant set of

the nonmegative cone R, which is attracting. This
completes the proof.

I is also an asymptotic global attractor for all solutions
of system (2) . Thus, it makes sense to study the dynamics of
system (2) in I rather than in R’ .

For any t € R, we consider any pair of variables from

the set { S,I,R} . Let us consider u(#) = (S(¢t) ,I(t)) e L,

where
g ) d
N={(S,) eRIS+I<—},
"
oru(t)y = (I(t) ,R(t)) e £2,, where
0 = (LR eRIT+R<-%y.
m
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Ford = u,N <1 in this case (thatis,/ + R<1orS+/1<
1).
Denote by C(( - «,0],R?)

continuous functions mapping the interval ( — o« ,0] into R?,

the Banach space of
with the topology of uniform (:onvergence[(’: . That is,for ¢ €
C((-,0 ],RZ) , the norm of ¢ is defined as
Fell =, sup 1e(o)1,

where | *| represents the usual norm in R*. Furthermore, for
xe C((-o» ,OJ,RZ) andt e [0,7], we define u, € C as

u () =u(t+6) =(S(t+6),1(t+6)),
oru () =u(t+60) =(It+6) ,R(t+6)) fore (-,
0].

System (2) can be written as an autonomous system of
delay differential equations:

u(1) =flu,) , (3)

where R(t) is givenby R(¢) =1 -(S(¢t) +1(t)) , provided
d =pforanyt e 0,7].

Next, we only investigate the following subsystem

S( 1) =d-pS(t) —Be™" %’
(4)

] = '/‘1"M_

I(t) _Be 1+O{1(l—7’) (/.L+‘)/)[(t)'

From (4) , we can easily get the diseasedree equilibrium

Ey = (5,0 = (-0
"

Lk

and the endemic equilibrium E° = (S

N ) , where
g o M +v +ad

au +Be
;o= 4B —plpty)

(m+7y) (au +Be™)

Let

s

then it is obtained that if r = 7 , then I’ =0,S" = and

d
I
E" becomes coincident with E; if 7 > 7° , there only exists
Ey; if7 < 7", then E* exists, but in the sequel, we shall
assume that system (2) is scaled such that S + 7 + R =1

(with d = w). That is,

sy =3 oy =MDy o RO

In this case, only the first two equations of system (2) are
relevant in the analysis. Without any ambiguity, we have use
the same notations, with the understanding that now S + 7 + R
= 1.

By Corollary 5.2 in Ref. [6 ], we have the following
Lemma.

Lemma 1 Assume that w,( *) and w,( *) are
non-negative continuous scalar functions from R, to R, , such

that
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wl(o) =0 = 0)2(0) ,lim a)l(t) =+ o,

t—o0

and V: C — R is continuous and satisfies
V(e) = w (] ¢(0) 1),
V@) 1 <-w(le(0)1). (5)

Then, the solution u = 0 of equation ( 3) is uniformly stable

and every solution is bounded.

2 Stability of the equilibria

In this section, we discuss the local stability of the
disease-ree equilibrium E, = (S,,0)
equilibrium E° = (S ,I") of system (4).

convenient to choose the variable (/,R) instead of (S,/)

and the endemic

It is more

which helps us to obtain an expression for the time delay 7,

and consider the following subsystem of ( 2) :

e SO I —T)
{I(t)—ﬁ’e Lralli_n ~(BENI0D. o)
R(1) = yI(1) - uR(1) ,

where S(#) =1, and equation (6) becomes

. _ g I(t - 1) _
{I(t>—ﬁe Trad(i—p ~ (I, 7

R(1) = yI(1) -pR(1).
Then the characteristic equation of system (7)
disease{ree equilibrium £y = (1,,R,) = (0,0) ( here S, +
I, +R, = 1,5, =1,I, =0,R, =0) takes the form
(A+m) (A +p+y-Be*re™) =0, (8)

Therefore, one of the characteristic roots is A =—-u < 0.

at the

Other roots of (8) are determined by the following equation
Atu+y—Be* e™ =0. (9)

When A = 0, from equation (9) , the delay-induced
reproduction number R, given below is obtained. The
disease-ree equilibrium being the most important from the
eco-biomedical point of view, parameters that drive the
disease dynamics are paramount in determing the stability of
this infection{ree steady state. A condition for the local
stability of the diseaseHree equilibrium E°; of system (7) is

that the delay-induced reproduction number

s
= % = R <1, (10)
wty
where
R =B
w+y

is called the basic reproduction number ( BRN). Even
though the introduction of time delays is harmless'” to the
persistence of the disease and the existence of positive
equilibrium at least from the mathematical point of view, it is
a destabilizing process in the sense that increasing the time

delay could cause a stable equilibrium to become unstable or

cause the population to fluctuate ® . For example, if 7— o,
then R, — 0 or 7 is large (the disease is almost eradicated,
which is not realistic, since diseases such as HIV have a very
long incubation period) while for 7—0,R;, — R,. Thus, itis
important to find the critical value of 7 for which the disease
will not spread. We have found that the endemic equilibrium

exists if and only if

r<r = 1fln J‘L
o (e +y)
Let R, =1, solving for 7, we obtain the critical time delay as
7, = —lIn L
Mty

Taking equality in the expression for 7 , il can be
shown that 7 -7, > 0. Thus, 0 <7, < 7 .

If infective individuals (in the latent phase of the
disease) or those who come into contact with infectious
individuals are detected and quarantine ( during this time
interval) , then the disease will likely die down if R, < €*1".

Theorem 2 The diseasedree equilibrium £, of system
(7) is locally asymptotically stable when R, < 1.

Proof. As ¢( ) forany § € ( — © ,0] and ¢(0) >0,
I(t) > 0forall t =0, where I(t) is any solution of
I(t-1)

. s ~
I(1) = Be v al(i-1) (w+y) (). (11)
Therefore, it is enough to consider the Lyapunov functional
I I(v)
= 3 7y
V(I(0)) = I(1) +Be lLHaI(v)du, (12)

which satisfies V(I(¢)) =1(t) =1 1(¢) | forany ¢t =0. So,
we have
VI ) 1y =100 +

’Mfi’ I(v) _
B ol vad(n) =

: A O (R R
100 +pe (l+al(t) 1+od(z—7'))

T I(t) _
Be T+ al(1) (nw+y) (1) <

Be ™ I(t) —(pn+y) (1), (13)
V(I(1)) < (Be™™ —(u+79))I(1) <O,R < 1.
Therefore, if R, < 1, then E7y = (0,0) is asymptotically
stable.
Now let us consider the local asymptotic stability of the
) of system (4) .

Theorem 3 Whenever the endemic equilibrium £~ of

i

endemic equilibrium E* = (S
system (4) exists, it is locally asymptotically stable.

Proof. Denote W, = S - S W, =1 - I" , then the

linear system of system (4) as follows:
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_ /
o (1) =- T " W (1) -
D]() (Be 1 +al +u) Wi (1)
a 5
D MIT * W L= )
u B a2l
0 . (1
(1) = Be™ ™ —— W (1) = () Wol1) +
O 1 +al
:
T ————W (1 -17).
U pe (1+a )2 H(t-7)
Now, we consider the Lyapunov functional
VW) = 3 WA() + (W) + Wa(0)* +
L,Bewl’ Lf W2( 6) do (15)
2 (L+ad )?hs? '

where p > 0 is a constant. We observe that
VIW(t)) Z2o (1 Wity 1) =

1 1

7W§( 0 +5p(Wi(e) +Wy(1) *, (16)
where w, is a positive definite quadratic form of W, and W,,
since p > 0. Hence,w, 20,0, =0 if and only if | W(1) | =
0, and

\W(})I\Hi+wwl( L W(t) 1) =+ 0.

The time derivative of V( W(t) ) along the solution of system
(14) is given by

VWD) |y = Wolt) Wy() +p( W, (1) W, () +

W, (0) Wy(1) + W,(0) W,(1) +
W,(0) Wy(1)) +

dgewyr S A -
2P el ) dzLTWZ(a)de‘

*

Wal0) (B Wi () -

(m+y) Wo(1) +
o

Be ™17 WWZ( t—7)) +

p(W, (1) (= (Be™”

1 +al

(Toary =)+

} I
T :
pe 1 +al
(m+y) Wi(t) Wy() +

_ S

T =W, (1) W,(t - -
Be (1 +al )2 (1) Wy( 7)
r
1 +al

(lJrST)sz(t) Wi(t-1) +

*

e

Wit -

(Be™ 1" —+w) W () W,(1) -

e

Be ™17 1 +al W, (1) W,(1) -
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(w+y) Wal0) +

ST _
B (O Wl =)

S (W0 - We(1-1)).

Ao S
2P el

After some algebraic manipulations, we obtain
VWD) 1y == (wty) Wa(0) +

ar S
Be™ (1 +a]*)zW2(t)W2(t_7'> -
. I 3
pBe W

*

Bet al*pr(D +

*

(B = p(2u+9)) W, () Wa(1) -

1 +al
plu+y) Wa(t) +

.
Taary 0 -

5

mwz(t —T). (17)

s

Choosing Be™1” — =p(2u+7vy), and

1 +al

ur s
Be ™ 7(1 +al*)2W2(t)W2(z_T) <

| 204 =
~Be (1+a]*)2(W2(t)+W2(t 7)),

-

where Be ™17 1 T + v, then equation ( 17) becomes
+a

VW (D)) 1y == (n+y) Wa() -

Be ™ ool pWi() = puWi(1) +
I 2

Be v o P - (w+y) pWi() +
ar S

pe™ mwﬁ(l) =

—(w+y) Wa(t) —puWi(t) -

S
(Trar) 0

“(u+y) (L+p) Wi(t) -

LIV w2 (h) <
1 +al

—(p+y) (L+p) Wi(1) —puWi(1) +

(w+y) Wa(n) =

—(p+y)pWaln) —upWi(1) <

—up(Wi(t) +Wi(1)) =

(1 WD) 1). (18)

From Lemma 1, this completes the proof.

(w+7) pWa(1) +Be™’

Wit +
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p+1

e’ (t) <-ge2(1). (41)
TS AES(40) o1, e < 1ye%]<0> i, fE7E 730 <
f<1-(14+y)e7(0) 04
fe(1) <e(1) <(2-6)e(t). (42)
Fa(41) Fi(42) mn
() s-—E—— (1),
(2-6) 2

it

Sk

(ef7(n) = 2=De (43)
202-0) 2
7e10.0] FBUISR(43) T

-1 p=l

T 2 e (0) 2= lE

2(2-9) 2
WIAELE C > 0,15

(1) < e (1) <C(1+1) 7T,

B E(1) < C(1 +0) 7.
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