DOI:10.3969/j.issn.1003-0972.2019.03.021

**文章编号:**1003-0972(2019)03-0459-06

# 不同表面活性剂对 CoSb<sub>3</sub>纳米粉体的影响及其非晶化研究

# 吴芳1\*,王伟2

(1.河南财政金融学院物理与电子工程学院,河南郑州450046;2.郑州工程技术学院信息工程学院,河南郑州450044)

摘 要:分别选用不同的表面活性剂(SDBS、CTAB、EDTA、PVP),采用水热法成功制备 CoSb。纳米粉体. 对制备的纳米粉体分别进行 XRD 和 SEM 表征,研究了不同表面活性剂对制备的 CoSb。纳米粉体的影响.结果 表明不同表面活性剂对制备的 CoSb。纳米粉体形貌有显著的影响.并将水热法制备的 CoSb。纳米粉体,采用脉 冲激光非晶化技术进行处理,结果表明纳米粉体实现了部分非晶化.通过样品的 XRD 分析研究了影响 CoSb。 纳米粉体部分非晶化的条件,结果表明扫描重复次数的增加可以提高 CoSb。基方钴矿热电材料的非晶化能力, 适当提高扫描速度有利于 CoSb。基方钴矿热电材料的非晶化.

关键词:CoSb<sub>3</sub>;纳米粉体;反应时间;表面活性剂;激光非晶化 中图分类号:TG146.4 文献标志码:A 开放科学(资源服务)标识码(OSID):

## Effects of Surfactants on the CoSb<sub>3</sub>Nanopodwers and Amorphization of the Synthesized Nanopodwers

WU Fang<sup>1</sup>, WANG Wei<sup>2</sup>

(1.College of Physical and Electronic Engineering, Henan Finance University, Zhengzhou 450046, China;2.College of Information Engineering, Zhengzhou Institute of Technology, Zhengzhou 450044, China)

Abstract: The  $CoSb_3$  nanopodwers were synthesized by the hydrothermal method using different surfactants which were Cetyltrimethyl Ammonium Bromide (CTAB), Ethylene Diamine Tetraacetic Acid (EDTA), sodium dodecyl benzene sulfonate (SDBS) and Polyvinyl Pyrrolidone (PVP). The phase structure and microtopography of the nanopowders were investigated by X-ray diffractometer (XRD) and a fileld-emission scanning electron microscopy (FESEM). The result showed that different surfactants had significant influence on the morphologies of  $CoSb_3$  nanopodwers. Laser rapid quenching method was used to deal with  $CoSb_3$  nanopowders that synthesized by the hydrothermal method in order to achieve partial amorphization of the  $CoSb_3$ . The amorphous conditions of  $CoSb_3$  were investigated by the XRD. The results showed that (1) with the increase of the scanning number, the amorphous level of  $CoSb_3$  raised; (2) Increasing the scanning speed properly could be helpful to increase the amorphous level of  $CoSb_3$ .

Key words: CoSb<sub>3</sub>, nanopodwers; reaction time; surfactant; laser rapid quenching method

## 0 引言

近几年,热电材料作为一种可以将热能和电能 相互转化的功能材料引起了科学界的广泛关注.热 电材料的性能通常由无量纲的热电优值 *ZT* 来表 示<sup>[1]</sup>.*ZT* =  $S^2 \sigma T / \kappa$ ,  $\kappa = \kappa_e + \kappa_s$ .其中:*S* 为材料的 塞贝克系数,*T* 为绝对温度, $\sigma$  和 $\kappa$  分别为材料的 电导率和热导率.材料的热导率  $\kappa$  是载流子热导率 和晶格热导率之和.热电器件应用的首要条件是: 高的转化效率,即要求热电材料具有高的 ZT 值, 这意味着热电材料要具有相对高的功率因子  $S^2\sigma$ , 同时具有比较低的热导率  $\kappa$ .

方钴矿化合物作为一种典型的 PGEC(声子玻 璃-电子晶体)热电材料,近年来得到了广泛的研 究,被认为是具有良好应用前景的热电材料.研究 发现当材料的维度降低,尺寸减小时,费米能级的

收稿日期:2019-01-06;修订日期:2019-04-03; \*.通信联系人,E-mail: fwu082@126.com

基金项目:国家自然科学基金项目(61705062);河南省重点科技攻关项目(182102210594);河南省高等学校重点科研项目(18A140013) 作者简介:吴芳(1982一),女,河南温县人,副教授,博士,主要从事纳米热电材料的研究.

电子态密度会随之增加,进而其载流子的有效质量 也会增加,因此可以通过降低粉体合成的尺寸来改 善块体热电材料的热电性能,YUAN 等<sup>[2]</sup>等采用 水热法成功制备了 CoSb<sub>3</sub>纳米粉体,纳米结构不仅 明显地增加了塞贝克系数 S,而且明显地降低了晶 格热导率  $\kappa_s$ ,同时也提高了 ZT 值.PEI 等<sup>[3]</sup> 用溶 剂热法合成的粒径为 20~50 nm 的二元方钴矿  $CoSb_3$ ,经热压烧结后,CoSb<sub>3</sub>的热电优值 ZT 在 300 K 时可达到 0.61. TOPRAK 等<sup>[4]</sup> 用一种新的 化学合金化方法合成粒径为纳米级的二元方钴矿 化合物 CoSb<sub>3</sub>,然后将 CoSb<sub>3</sub>粉末分别选择在不同 时间段退火,从而得到不同尺寸的颗粒.然后将这 些样品进行热压烧结,测其热电性能.实验结果发 现:随着粒径尺寸的减小,CoSb<sub>3</sub>块体的热导率随 之降低,当粒径减小到纳米级范围,热导率有明显 的降低.如当平均粒径为140 nm 时,与单晶或多晶 样品相比,热导率降低了一个数量级.

因为非晶材料具有较低的热导率,晶体材料具 有较好的电导率,如果使 CoSb。基方钴矿热电材料 实现部分非晶化,可以有效降低其热导率,同时维 持相对高的电导率,进而得到较高的 ZT 值.目前, 很多金属和合金体系已经通过激光非晶化技术实 现了非晶化转变<sup>[5,6]</sup>.当激光辐照在样品表面,光波 的电磁场与材料中的自由电子或束缚电子相互作 用,这一过程将光能转化为热能,加热长条表面,材 料表面形成几到几百纳米厚的过热度很高的熔体, 在热量未传给冷态基体的条件下,熔体与相邻基体 之间保持了很大的温度梯度和极高的冷却速度,从 而在材料表面形成非晶层<sup>[7]</sup>.

本研究分别选用不同的表面活性剂采用水热 法成功合成了 CoSb<sub>3</sub>纳米粉体,并对合成的纳米粉 体进行 XRD 和 SEM 表征,研究了不同表面活性 剂对制备的 CoSb<sub>3</sub>纳米粉体的影响.接着将水热法 制备的 CoSb<sub>3</sub>纳米粉体,采用脉冲激光非晶化技术 进行处理,实现纳米粉体部分非晶化.

### 1 实验方法

#### 1.1 粉体制备

实验采用的反应原料为分析纯硝酸钴(Co (NO<sub>3</sub>)<sub>2</sub>)、酒石酸锑钾(C<sub>4</sub>H<sub>4</sub>KO<sub>7</sub>Sb・1/2H<sub>2</sub>O). 硼氢化钠(NaBH<sub>4</sub>)作为强还原剂,去离子水作为 反应溶剂,氢氧化钠(NaOH)为 pH 调节剂,表面 活性剂为:十六烷基三甲基溴化铵(CTAB)、十二 烷基苯磺酸钠(SDBS)、聚乙烯吡咯烷酮(PVP)和 乙二胺四乙酸(EDTA).反应设备为型号 FYXD0. 5-20/350-316L的永磁搅拌高压釜.根据 CoSb<sub>3</sub>元 素的化学计量比,称量好所有原料放入高压釜内衬 内,密封好釜盖,调节搅拌速度,反应温度和时间分 别调节为 563 K 和 72 h.实验分四组进行,每组实 验加入不同的表面活性剂.四组实验得到的粉体分 别记为 CTAB-CoSb<sub>3</sub>、SDBS-CoSb<sub>3</sub>、PVP-CoSb<sub>3</sub>和 EDTA-CoSb<sub>3</sub>.

#### 1.2 **激光样品制备**

将 CoSb<sub>3</sub> 粉体用条状磨具在 769 YP-15A 粉末 压片机上压成厚度约为 2 mm 的样品,然后将样品 分别放在如图 1 所示的铜板上,进行激光处理.装 置中钟罩的两侧设有可通 Ar 气的通道,可以防止 样品被氧化.实验步骤如下:在实验开始前,打开开 关保持冷却水畅通,在激光器的配置电脑软件系统 面板上,调好扫描宽度,扫描速率和输出电流,通 Ar 气,对放入的样品进行激光扫描.扫描结束后, 关闭开关,打开钟罩的放样品入口,取出样品.



Fig. 1 The anti-oxidation device

实验使用的设备为激光系统-大恒 Nd: YAG 激光打标机(波长λ=1.06 μm,激光功率大小由电 流标示).在该实验仪器下,影响材料非晶化程度的 因素主要包括:光斑直径(光斑直径通过调节聚焦 镜离焦距离设定)、扫描速度、样品的厚度和扫描重 复次数.由于本实验光斑直径和焦距是设定好的, 实验中控制样品的厚度不变,所以影响实验结果的 主要有两个因素:激光束的扫描速度和扫描重复次数.

#### 1.3 样品表征

(1)SEM 分析 样品的微观形貌用场发射扫描电镜(JSM-6700F,JEM, Japan)进行观察.

(2) XRD 分析 样品的物相分析采用 X 光衍 射仪(X'PertPro, PANalytical, Holand, 波长为 0.154 nm 的 Cu-Kα 射线)来确定,采集步长为 0.02°, 扫描范围为 10°~85°.

#### 2 结果和讨论

### 2.1 表面活性剂对 CoSb<sub>3</sub>纳米粉体形貌的影响

图 2 是不同表面活性剂作用下水热法合成的 CoSb<sub>3</sub>粉体的 X 射线衍射图.图 2 中所有的衍射图 谱都具有立方结构的二元方钴矿 CoSb<sub>3</sub>物相(PDF No. 01-078-0976;晶格常数 a = 9.04 nm;空间群为 Im<sup>3</sup>(204))组成基本一致.图谱中除了少量的中间 物相 CoSb<sub>2</sub>的存在,没有明显出现其他物相的衍射 峰,这表明本实验通过水热合成的方法得到了相对 较纯的 CoSb<sub>3</sub>.在硼氢化钠(NaBH<sub>4</sub>)强还原剂的作 用下,可能进行的化学反应如下所示<sup>[8]</sup>:

 $Co(NO_3)_2 + 2NaBH_4 = Co + 2BH_3 + 2NaNO_3 + H_2$ ,

 $C_4\,H_4\,KO_7\,Sb\!+\!2NaBH_4\!=\!$ 

 ${
m Sb}\!+\!2{
m BH}_3\!+\!C_4\,{
m H}_4\,{
m KO}_7\,{
m Na}_2\!+\!{
m H}_2$  ,

 $Co+2Sb=CoSb_2$ ,

 $CoSb_2 + Sb = CoSb_3$ .

由于 NaBH<sub>4</sub> 为强还原剂,化学反应方程式(3) 和(4)反应剧烈,在很短的时间内就可还原出 Co 和 Sb 原子.在水溶液中 SbO<sup>+</sup>/ Sb 和 Co<sup>2+</sup>/Co 的 标准电动势分别为 0.212 V 和-0.280 V, 所以在 NaBH。强还原剂作用下 Sb 离子比 Co 离子更容易 还原成为原子,从而大量的 Sb 首先被还原形成颗 粒<sup>[9]</sup>,与已报道的文献<sup>[10-13]</sup>用水热法制备的 CoSb<sub>3</sub> 相比,本实验的反应原料、反应溶剂、反应温度和反 应时间与其不相同.在 X 射线衍射图中存在微弱的 少量的其他物相衍射峰,原因可能是由于反应不完 全生成了中间相 CoSb<sub>2</sub>或者是 NaBH<sub>4</sub>优先还原 Sb 的结果.对于图 2(a)衍射图谱中的晶面(220),可能 由于在表面活性剂 CTAB 作用下,该晶面生长较 快,从而在 CTAB 作用下得到的 XRD 衍射峰在晶 面(220)相对比较强.晶格常数和晶粒尺寸由 XRD Rietveld 结构精修的方法计算而得,如表1所示.

### 表 1 粉体的晶格参数和晶粒尺寸 Tab. 1 The lattice parameter and grain size

of the nanopowders

|                        |         | -                          |                     |                   |        |
|------------------------|---------|----------------------------|---------------------|-------------------|--------|
| 样品                     | a = b = | $\alpha \!=\! \beta \!=\!$ | 晶胞体                 | 密度/               | 晶粒长    |
|                        | c/nm    | γ/(°)                      | 积/nm <sup>3</sup> ( | $g \cdot cm^{-3}$ | ) 度/nm |
| CTAB-CoSb <sub>3</sub> | 0.906   | 90                         | 0.744               | 7.63              | 0.573  |
| $SDBS-CoSb_3$          | 0.904   | 90                         | 0.737               | 7.64              | 0.600  |
| PVP-CoSb <sub>3</sub>  | 0.903   | 90                         | 0.737               | 7.64              | 0.499  |
| $EDTA-CoSb_3$          | 0.905   | 90                         | 0.738               | 7.62              | 0.517  |

从表1可以看出,不同表面活性剂下制备的 CoSb<sub>3</sub>纳米粉体的晶格常数均接近于标谱 PDF No. 01-078-0976,且其晶粒尺寸均在纳米范畴.



at 563 K for 72 h

图 3 为加入不同表面活性剂制备的 CoSb<sub>3</sub>纳 米粉体的 SEM 图片,表面活性剂在反应的过程中 所起的作用主要有两方面:模板导向剂和颗粒尺寸 控制剂.



图 3 不同的表面活性剂作用下合成的 CoSb<sub>3</sub>粉体 的 SEM 图(a) SDBS-CoSb<sub>3</sub>; (b)~(d) PVP-CoSb<sub>3</sub>; (e) EDTA-CoSb<sub>3</sub>; (f) CTAB-CoSb<sub>3</sub> Fig. 3 The SEM images of CoSb<sub>3</sub> nanopowders synthesized

with different surfacants

图 3 中的(a)和(f)分别是在表面活性剂 SDBS 和 CTAB 作用下得到的粉体的 SEM 图片,与没有 加分散剂的 CoSb<sub>3</sub>粉体的 SEM 图片相比<sup>[14]</sup>,加入 不同表面活性剂的样品平均颗粒粒径约减小 10 nm.由表面活性剂 SDBS 制备的粉体颗粒形貌为 不规则的椭球状,如图 3(a)所示.CTAB 作为表面 活性剂时颗粒形貌为球状,如图 3(f)所示,球状颗 粒粒径约在 20~50 nm.图 3(e)为 EDTA 作用下 CoSb<sub>3</sub>的 SEM 图片,呈现为近似立方体的形貌,颗 粒粒径大小约为 40~60 nm.

图 3(b)是在表面活性剂 PVP 作用下合成的 CoSb<sub>3</sub>粉体的 SEM 图片,从图片中可以看到颗粒 形状为花型和片层状的复合形貌,这一结果可以在 图 3(c)和(d)中得到验证,图 3(b)、图 3(c)和图 3 (d)分别是在 PVP 作用下合成的 CoSb<sub>3</sub>粉体的同 一样品不同位置的 SEM 图片.其中图 3(c)呈现的 是花型形貌,厚度约为 10~20 nm,另一种颗粒形 貌为图(b)所示的片层状.

在 PVP 作用下呈现两种不同形貌,其原因可 以从 PVP 的分子结构上来解释,如图 4 所示.



从 PVP 分子式可以看出,存在于 PVP 分子中 N和O与反应溶液中的 CoSb<sub>3</sub> 晶核结合,晶核以 PVP 为模板导向,其中一部分 CoSb<sub>3</sub> 晶核的生长 过程如图 5 所示<sup>[15]</sup>,在第二个阶段沿着 a-b 面生 长,晶核在 a-b 面的生长速度快于 c 轴方向,最终 这种形式的晶核生长形成花型颗粒,这些小的花型 颗粒在 PVP 分子角度变形、移动的过程中相互接 触,最终形成如图 3(c)所示的形貌.同时另一部分 CoSb<sub>3</sub>晶核以图 6 所示<sup>[15]</sup>的形成过程生长:首先形 成细小的晶粒,然后晶粒长大,在 PVP 分子的作用 下聚合,最终以具有较低的表面能形成片层状形 貌,如图 3(d)所示.



以上实验结果表明:在不同的表面活性剂作用下,CoSb<sub>3</sub>呈现出不同的形貌特征,表面活性剂不 仅为粉体形成的微观形貌提供了模板导向作用,同 时控制着粉体颗粒粒径的大小.值得注意的是,在 本实验条件下,水热法合成的CoSb<sub>3</sub>在表面活性剂 PVP作用下呈现出两种不同的形貌特征,这与已 报道的KUMARI等<sup>[16]</sup>的实验结果有所不同.这一 结果的出现可能与本实验的实验设备和反应条件 有关,如:高压釜的型号,反应温度,保温时间,反应 原料,PH浓度和溶剂的种类等.目前尽管对CoSb<sub>3</sub> 晶核与表面活性剂在水溶液中的相互作用机理还 不是很确定,但是猜想表面活性剂在CoSb<sub>3</sub>晶体形 成过程中起模板导向作用.

2.2 不同扫描速度对 CoSb₃非晶化程度的影响

实验前先称量好四份相同质量(2g)的粉末, 编号分别为①②③④.样品①作为对照,②③④进 行激光处理,输出电流均为16A,正反面各扫描一 遍,激光处理过程中通入保护气体Ar气.样品①命 名为:①-0A-0mm/s;扫描速度为600mm/s的样 品②命名为:②-16A-600mm/s;扫描速度为2000 mm/s的样品③命名为:③-16A-2000mm/s;扫描 速度为3000mm/s的样品④命名为:④-16A-3000mm/s;实验开始前,打开Ar气阀门,先通一 会保护气体Ar气,赶走装置罩中的氧气,使预置 样品的周围环境处于少氧或缺氧的状态.



扫描速度下处理后的 CoSb<sub>3</sub>粉末 X 射线衍射图.样 品①经 XRD 物相分析,粉末的主要成分为 CoSb<sub>3</sub>, 还有少量的、微弱的中间物相 CoSb<sub>2</sub>存在,如图 7a 所示.图 7b 是在电流为 16 A,扫描速度为 600 mm/s 的条件下,激光束对样品 ②的正反面各扫 描一遍后得到的粉体的 X 射线衍射图,与图 7a 相 比,图 7b 的 X 射线衍射图在 25°~35°范围内出现 了表征非晶相的漫散包,其上叠加有大量的晶体衍 射峰,说明激光处理后样品中除了含有一定量的非 晶态外,还含有大量的晶体.经 XRD 物相分析,晶 体的主要成分为 CoSb,CoSb<sub>2</sub>和 Sb.

当扫描速度为 2000 mm/s 时,如图 7c 所示, 表征非晶态的漫散包与图 7b 相比略有减小,当扫 描速度提高到 3000 mm/s 时,如图 7d 所示,表征 非晶相的漫散包几乎消失.说明随着扫描速度的增 加,表征非晶态的漫散包逐渐减小,最后几乎消失. 原因分析:在激光电流(激光功率)和扫描次数相同 的情况下,过度地提高扫描速度将会降低 CoSb<sub>3</sub>熔 化部分液态保持时间,熔体来不及实现成分均匀 化,这就导致熔化部分 CoSb<sub>3</sub>的成分极不均匀,各 个微小的熔化部分成分也相差很大,这样就满足了 非均匀成核所需要的成分和相的起伏,从而降低了 微小熔化部分 CoSb<sub>3</sub> 非晶的形成能力.如果该微小 熔化部分经冷却后重结晶形成晶体 CoSb<sub>3</sub>,这将会 给相邻熔化部分的 CoSb<sub>3</sub>提供了非均匀成核条件, 导致相邻熔化区域的 CoSb<sub>3</sub>的非晶形成能力降低, 从而导致整个样品表面熔化区域的非晶形成能力 降低.

此组实验激光处理后,非晶相漫散包上叠加的 晶体衍射峰未出现明显的 Sb 的氧化物,说明保护 气体 Ar 气的存在,有效地减少了 Sb 和 CoSb<sub>3</sub>的氧 化.

## 2.3 扫描重复次数对 CoSb<sub>3</sub>非晶化程度的影响

如前面实验,准备好质量相同的四个样品①② ③④(质量为2g,2mm厚×2.5cm长的条状).样 品①作为对照,②③④进行激光处理,输出电流均 为16A,扫描速度均为2500mm/s,激光处理过程 中通入保护气体Ar气.样品①命名为:①-0A-0 mm/s-0;样品②表面扫描一遍,命名为:①-16A-2500mm/s-1;样品③表面扫描3遍,命名为:③-16 A-2500mm/s-3;样品④表面扫描5遍,命名为④-16A-2500mm/s-5;实验开始前,打开Ar气阀门, 先通保护气体Ar气,赶走装置罩中的氧气,使预 置样品的周围环境处于少氧或缺氧的状态.



图 8a 为水热法合成的 CoSb<sub>3</sub>粉末 X 射线衍射 图,经 XRD 物相分析,晶体的主要成分为 CoSb<sub>3</sub>, 并伴有少量的中间物相 CoSb<sub>2</sub>存在.图 8b~d 分别 为:在输出电流 16 A,扫描速度 2500 mm/s 扫描 1 遍,3 遍和 5 遍后的样品的 X 射线衍射图.从图中 可以看出,在 25°~40°以及 45°~65°均出现了表征 非晶相的漫散包.其上叠加有大量的晶体衍射峰, 经 XRD 物相分析,图 8b 晶体的主要成分为 CoSb<sub>3</sub>和 CoSb<sub>2</sub>;图 8c 晶体的主要成分为 CoSb,CoSb<sub>2</sub>和 Sb;图 8d 晶体的主要成分为 Sb<sub>2</sub>O<sub>3</sub>,CoSb,CoSb<sub>3</sub>和 Co<sub>3</sub>O<sub>4</sub>.表明经激光处理后的样品中除了有一定 量的非晶相存在外,还有大量的晶体存在.随着扫 描重复次数增多,表征非晶态的漫散包逐渐变大, 如图 8b~c 所示.

当在同样输出电流和扫描速度的条件下,激光 束在样品表面重复扫描三遍,得到的粉末的 X 射 线图谱如图 8c 所示.与图 8b 相比,在 25°~40°以 及 45°~65°范围内表征非晶相的漫散包明显变大, 同时漫散包上叠加的晶体衍射峰也减弱了,说明样 品经激光束重复扫描三遍后,样品中非晶相的含量 有所增加.经 XRD 物相分析,晶体的衍射峰 CoSb<sub>3</sub> 逐渐消失,CoSb<sub>2</sub>的衍射峰逐渐增强,同时在 45°左 右出现 CoSb,可能是 CoSb<sub>3</sub>分解所致.其他条件不 变,当激光束扫描表面的重复次数增加为 5 遍,样 品的 X 射线图谱如图 8d 所示.与图 8b 和图 8c 相 比,图 8d 中的 X 射线图谱,在 25°~40°范围内出现 的表征非晶相的漫散包进一步增大.其上仍然叠加 有晶体衍射峰,经 XRD 物相分析,晶体衍射峰主 要为 Sb 的氧化物 Sb<sub>2</sub>O<sub>3</sub>.原因可能是:当扫描重复 次数增加时,样品中粉体被激光束辐照的量增多, 熔化冷却部分的量也随之增多,从而 XRD 中表征 非晶相的漫散包变大;由于原料 CoSb<sub>3</sub>是由水热法 制备的,粉体颗粒粒径小,其比表面积较大,从而粉 体颗粒表面吸附有一定量的氧气,虽然装置中通有 保护气体 Ar 气,但是随着高能激光束的冲击,表 面粉体发生溅射,样品表面下层的粉体也受到激光 束的辐照,从而导致 Sb 结合里面的氧形成 Sb 的 氧化物 Sb<sub>2</sub>O<sub>3</sub>.

#### 3 结论

本文选用不同的表面活性剂:SDBS、CTAB、 EDTA、PVP,采用水热法成功合成了 CoSb<sub>3</sub>纳米 粉体.对合成的四种纳米粉体分别进行 XRD 和 SEM 表征.结果表明,在不同的表面活性剂作用 下,CoSb<sub>3</sub>呈现出不同的形貌特征,表面活性剂不 仅为粉体形成的微观形貌提供了模板导向作用,同 时控制着粉体颗粒粒径的大小.值得注意的是,在 本实验条件下,水热法合成的 CoSb<sub>3</sub>纳米粉体在表 面活性剂 PVP 作用下呈现出两种不同的形貌特 征.接着采用脉冲激光非晶化技术,将水热法制备 的 CoSb。纳米粉体进行处理,实现了 CoSb。纳米粉 体部分非晶化.通过样品的 XRD 分析研究了影响 CoSb<sub>3</sub>纳米粉体部分非晶化的条件.结果表明:(1) 随着扫描重复次数的增加,可以提高 CoSb<sub>3</sub>基方钴 矿热电材料的非晶化能力.(2)适当地提高扫描速 度,可以提高冷却速率,有利于 CoSb<sub>3</sub> 基方钴矿热 电材料的非晶化,但是过度地提高扫描速度,将会 降低样品表面熔化部分的存在时间,从而减小了熔 化部分实现成分均匀化所需要的时间,导致熔化部 分成分极不均匀,满足了非均匀成核所需要的条 件,反而降低 CoSb<sub>3</sub>基方钴矿热电材料的非晶形成 能力.这一研究对方钴矿热电材料性能的提高提供 了一个新的途径.

## 参考文献:

- [1] HE J. TRITT T M. High advances in thermoelectric materials research: Looking back and moving forward[J]. Science, 2017, 357 (6358):1369-1381.
- [2] LI Y, LI C G, WANG B B, et al. A comparative study on the thermoelectric properties of CoSb<sub>3</sub> prepared by hydrothermal and solvothermal route[J]. Journal of Alloys and Compounds, 2019, 770: 772-774.
- [3] PEI Y Z, CHEN L D, ZHANG W, et al. Synthesis and thermoelectric properties of KyCo<sub>4</sub>Sb<sub>12</sub>[J]. Applied Physics Letters, 2006, 89 (22): 1107-1110.
- [4] TOPRAK M S, STIEWE C, PLATZEK D. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb<sub>3</sub>[J]. Advanced Functional Materials, 2004, 14 (12): 1189-1196.
- [5] BECK H, GUENTHERODT H J. Glassy metal II: Atomic structure and dynamics, electronic structure, magnetic properties[M]. Berlin: Springer-Verlag, 1983: 28.
- [6] 钟敏霖,刘文今,姚可夫,等. Fe-C-Si-B合金连续激光非晶化及非晶形成条件的研究[J],金属学报,1997,33(4):413-419. ZHONG M L, LIU W J, YAO K F, et al. CW laser glazing of Fe-C-Si-B alloy and forming condition of metallic glasses[J]. Acta Metallurgica Sinca,1997, 33(4):413-419.
- [7] 许春香,张金山.材料制备新技术[M].北京:化学工业出版社,2010:104-123.
- XU C X, ZHANG J S. New technology of material preparation[M]. Beijing: Chemistry Industry Press, 2010:104-123.
- [8] JIAN X, ZHAO X B, MI J L, et al. Solvothermal synthesis of nanosized CoSb<sub>3</sub> skutterudite[J]. Journal of Zhejiang University-Science B, 2004, 5 (12): 1504-1508.
- [9] LI J Q, FENG X W, SUN W A, et al. Solvothermal synthesis of nano-sized skutterudite Co<sub>4-x</sub> Fe<sub>x</sub> Sb<sub>12</sub> powders[J]. Materials Chemistry and Physics, 2008, 112(1): 57-62.
- [10] VENKATASUBRAMANIAN R, SIIVOLA E, COLPITTS V, et al. Thin-film thermoelectric devices with high room-temperature figures of merit [J]. Nature, 2001, 597 (413): 579-602.
- [11] YANG L, HNG H H, CHENG H, et al. Synthesis of CoSb<sub>3</sub> by a modified polyol process[J]. Materials Letters, 2008, 62(16): 2483-2485.
- [12] MI J L, ZHAO X B, ZHU T J, et al. Solvothermal synthesis and electrical transport properties of skutterudite CoSb<sub>3</sub>[J]. Journal of Alloys and Compounds, 2006, 417 (2): 269-272.
- [13] XIE J, ZHAO X B, CAO G S, et al. Solvothermal synthesis and electrochemical performances of nanosized CoSb<sub>3</sub> as anode materials for Li-ion batteries[J]. Journal of Power Sources, 2005,140(2): 350-354.
- [14] 周芸, 沈容, 史庆南, 等. 热电材料的最新进展[J]. 昆明理工大学学报(理工版), 2003, 28(3):14-17. ZHOU Y, SHEN R, SHI Q N, et al. Recent development of thermoelectric materials[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2003, 28(3): 14-17.
- [15] ZHAO Q, WANG Y G. A facile two-step hydrothermal route for the synthesis of low-dimensional structured Bi<sub>2</sub> Te<sub>3</sub> nanocrystals with various morphologies[J]. Journal of Alloys and Compounds, 2010, 497(2): 57-61.
- [16] KUMARI L, LI W Z, HUANG J Y, et al. Solvothermal synthesis, structure and optical property of nanosized CoSb<sub>3</sub> skutterudite [J]. Nanoscale Research Letter, 2010, 5(10): 1698-170.

#### 责任编辑:张建合