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Dynamical Analysis for an Impulsive Vaccination
Delayed SEIRS Epidemic Model
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Abstract: A delayed SEIRS epidemic model with impulsive vaccination and varying total population size was stud—
ied. The results show that there exists an infection-ree periodic solution which is globally attractive if R, <1 and the
disease is permanent if R, > 1.
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0 Introduction This paper considers the following model:
' 1(1) S(1)

In recent years epidemic mathematical models EB =4 - _Bl +al (1) - g
Eafve | beer:l. studlefi by maTny bscho'lar'sc.lMa}riy B (1= p)ul(1) +re™ (1 - o) E
Intectious diseases 1n nature 1ncubate 1nside the 0. ) 1(1) S(2) It - o) St - ) 0
hosts for a period of time before the hosts become F = Bl +al*(1) -B 1 +al(t - ) ) - g { £ nr
infectious. Using a compartmental approach one B pk + (1 = p)ul(t) O
may assume that a susceptible individual first goes EY B ﬁ](t ~0)S(1-w) (reusd () E
through a latent period after infection and before O " 1+al(l-o M E
becoming infectious. The resulting models are of Eﬁ = rl(1) —re™ (1 - ) -puR U
SEIR or SEIRS types respectively depending on K(nr*) = (1 -0)S(nr) .
whether the acquired immunity is permanent or EE( . E(nr) g,

nt’) = E(nr =nr
otherwise. Time delay and impulse are introduced []( Y = I(nr) O N

n =1(n neN,
into epidemic models which greatly enrich biologic E{R( ’ " R(T ) 4 85(nr) %

nt) =R(nr") +85(nr

background there were some literatures '~ about

delay epidemic models with impulsive effect.
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SEIRS

where all coefficients are positive constants

N(t) = S(t) +E(t) +1(t) +R(2)
denotes the total population at time ¢. 8 > 0 is the
transmission coefficient. The death rate for disease
and physical disease rate are d and u respectively.
r is the recovery rate of infectious individual. §( 0 <
5 < 1)

successfully at times ¢ = k7 k e N,. The time

is the proportion of those vaccinated

delay w is the latent period of disease.pul (0 < p
< 1) is the number of newborns of infectious who
transfer to the susceptible class and (1 - p)ul is
the number of newborns of infectious who are
infected. The temporary immunity period of the
recovered is @’ and the death of the recovered
individuals during the temporary immunity period is
the term re ™ I(t - w") .
The total
determined by the differential equation
N(t) = A —uN(t) - dl
It follows that
A A

< liminf N(#) < limsup N(1) <
oo+ d t—% t—o

population size N(t) can be

Note that the variables £ and R do not appear
in the first and third equations of system ( 1) . This
allows us to consider the following subsystem:

R ()N ) I
=ARS BT

(L=p)ul(t) +re™ (1 - w)
I(t-wS(t-ow)
B 1 +al(t-w)

(nr") =(1-8)S(nr") ] t=nr
(nt") =1I(n1")

I # nt

I

-(r+p+d (1)

OO0 moog,

=
Iy

L

n e N,.
(2)
Set # = max{w w7} the initial condition of system
(2) is given as
(e (9 e(0)) eC.=A -600 R))
0;(0) >0 =1 2. (3)
From biological considerations we discuss system
(2) in the closed set
N={(SI) eRIS=01=0 S+1<4}.
n
It is easy to show that 2 is positively invariant with
respect to (2) .
Lemma 1°*

Considering the following

equation:
(1) = ax(t - w) — ax(t)
where a; a, w > 0 for —w <t < 0 it follows that
(1) if @, < a, then ,lirilx( ) =0

(i) if @, > a, then limx(1) = o.

t—

1 Global attractivity of infectionfree
periodic solution

Firstly we give some basic properties of the

following subsystem of system (2) :

S(1) =A-puS(1) t#nr
{S(z*) =(1-6)S(t) t =nr neN,.
We know that the periodic solution of system (4) :
> A [
S.(1) = ;(1 ~1 1 —8)67#78
kr <t<(k+1)7 (5)
is globally asymptotically stable.

(4)

-l t=kr) )

Theorem 1 If R, < 1 then the infection{ree

periodic solution ( S.(7) 0) of system (2) is
globally attractive where

Au + Are™ 1 -e”
w(d+r+u) 1-(1-8e™*

Proof Since R, < 1 then we can choose &,

T

Ry = Be™

> 0 sufficiently small such that
o ¢ A+ Are ™ 1 —e”

o .
Be ( /.LZ 1_(1_5)6*/”'

d+r+pu kr <t <(k+1)r (6)

T

+g) <

From the first equation of system (2) we have
Are ™

—uS(1).
Then we consider the comparison system

Are ™
" —ux(t) ¢ #nr (7)
x(t") = (1 -8) (1)

By computing we can obtain the unique periodic

S(1) <A+

x(t) = A+

t = nt.

solution of system (7) :

~ _qu)
2(1) = 4/%(1 _

7

1) “ul1-k7)
[ —(1-ger )
kr <t <(k+1)7

which is globally asymptotically stable.
Let (S(t) I(t)) be the solution of system ( 2)
with initial values (3) «x(t) be the solution of
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system (4) with initial value x(0%) = S,. There

exists an integer k, > 0 such that

S(1) <x,(t) +e& kr<t<(k+1)7
that is

S(t) <S,(1) +& <

Au + rAde ™ . 1 —e
w 1 -(1-6)e™

—ur

+e A S

(8)
where kr <t <(k+1)7 k >k, S (1) is defined in
(5) . From the second equation of system (2) we
know that (8) implies that

(1) <Be™ SI(t-w) -

(r+u+d)I(8) t > k71 + o
Consider the following comparison system:

W) =Be™ Sy(1 - w) -

(r+u+d)y(t) t >k7+o (9)
From (6) we have Be™ S < r + u + d. In view of
Lemma 1 we have ,lirily( 1) =0.

Let y(t) be the solution of system (9) with
initial value y(¢) =¢(¢) >0(fe -w 0 ). We
have lifriswupl( 0 < lirlriswupy( £) = 0. Incorporating
into the positivity of /() we know that }irg( t) =
0. Therefore for any &, > O( sufficiently small)
there exists an integer k, > k, such that I(1) < &,
for all ¢t > k,7.

For the first equation of system (2) we have

S(1) =-BeS(1) +A-uS(1) = (1 -p)ue.
Considering the comparison impulsive different
equation for ¢ > k,7 k > k,

A1) =A-(1-p)us, -
(Be, +u)2(1)
2(t7) = (1 -6)z(¢)
we have the unique periodic solution of system

(10):

t #nr (10)

t = nt

~ A - 1 -
sy AU -ppe
Be, +p
(- AU =Ppes
Be, +u

kr<t<(k+1)7
which is globally asymptotically stable where
oo (A -(1-p)us,) (1 -8)(1 -e™)
(Be, +u) (1 = (1 -8)e™)
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Let z(t) be the solution of system ( 10) with initial
values z( 0*) = S,. There exists an integer k; > k,

such that

~

S(t) >z,(t) —&, kr <t <(k+1)7 k >k,
(11)
Because g, and g, are arbitrary small it follows from
(8) and (11) that
& A 6
S = T T et
kr <t<(k+1)7

=i )

is globally attractive. Therefore the infectionHree

attractive. This

(S(1) 0) s

completes the proof.

globally

solution

2  Permanence

Denote
_ pABe ™ .
P (r+p+d) (u +ad?)
(1-8(1 -e™)
(1-(1-8)e™)

2

2
ro= MiJfﬁ“A (R, -1).
Theorem 2 Suppose R, > 1

then there is a
positive constant ¢ such that each positive solution
(S(#) () of system ( 2) satisfies (1) = q if ¢
is large enough.

Proof Suppose (S(t) I(t)) is any positive
solution of system (2) with initial conditions ( 3) .
The second equation of system (2) may be

rewritten as

i e U )
wo d [ S(0)1(6)
Be dtﬁ—w1+a12(0)d0' (12)
Define

d

V(i) =1I(1) +Be"“"$f mde

-1 + al’(6)
Calculating the derivative of V(i) along the
solution of system (2) it follows from ( 12) that
: o S I(t
W) =gy (+L1§(1> )
(r+wp+d)I(1). (13)
Since R, > 1 we easily see that I’ > 0 and there

exists sufficiently small £ > 0 such that
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B/-‘vz i (h _
oprd) (@ rar) 0 2
where
(A= (L=pal )(1-8)(1-c™)

(B +p) (1 -(1-8)e™)
(14)
Suppose that there is a ¢, > 0 such that I(1) < I
for all ¢ > 1, it follows from the first equation of
(2) that fort > ¢,
S() =A-pI"S(t) —pS(t) = (1 =p)ul .

Consider the following comparison impulsive system

fort = ¢,
u(t) =A-pru(r) -
uul t) —(l—p),u,f I # nrt
u(t™) = (1 -8 u(t) i = nT.
(15)
We obtain that
i =A=U=plul /(3]‘ ‘fﬁ)t L,
(u* _ A - ( 1* _P)&[* ) o k)
Bl +p

kr <t(k+1) <7
which is globally asymptotically stable where
A (Ll ) (1 =8 (1)
(Bl +p) (1 -(1-05)e™)
We know that there exists a t,(#, > t, + )

such that the following inequality holds for ¢ = ¢,

S(1) = u,(1) -¢ (16)
Thus S(t) >u -¢ L ofort >t from (14) we

have

Blu“zeilwo' > 1
(r+p+d)(u +ad’)

by (13) and (15

) we have

" 2(r+,u,+d)((r+,uﬁ§)(lu +aA2) -
) I(t) t >, (17)
Set
b=, e, 1

we will show that I(¢) = I, for all t > ¢,. Suppose
the contrary there is a T, > 0 such that I( ) =1, for
Lh<t<st,+T,+w I(t, + Ty + ) =1, and

(t, + T, +w) <O.

However the second equation of system (2) and

(16) imply that
. 2 —pw
I(t, + T, +w) < (ﬁ'“—S(tl +T,)

(u' +ad®
(r+p+d))1, >
2 o
(ﬁljf—a;_(rww))ll > 0.

This is a contradiction thus I(t) =1, for all ¢ > ¢,.
As a consequence (17) leads to
Vs (Ao
w o+ ad
for t > t, which implies that V() — « ast— .

- (r+u+d))]

This contradicts
2

O IS . ——y
® w o+ ad’
Hence for any #, > 0 it is impossible that I( ) <
I" for all t > t,. Following we are left to consider
two cases:
(i) 1(1)
(ii) I(t) oscillates about I for all ¢ large

= I for all large &.

enough.
Finally we will show that

[( t) = I* ef(r+p.+d)(7-+T*) é q

as t is large sufficiently. Evidently we only need
consider the case ( ii) .

Let ¢, and ¢, be large sufficiently and satisfy
I(t)) =1(t,) =T I(t) <I aste(t, t,). Ift,
(r+u+d)I(t) and
Ife, — ¢

-4, <T +w then I(1) = -
(1) =1 implyI(¢)

> T +w then it is clear that I( 1)

=qforte t t, .
=qforallt e

t, t, + T + w . Thus proceeding exactly as the
proof for claim we see that S(¢) > o forallt e 1,
+T 1,

. Next we will prove that I(t) = ¢ for all ¢

e L, +T +w+T, I(t, +T +w+T) =gq
and I t, + T + T, + o) < 0.Using the second
equation of system (2) ast =¢, +T +7T, +w we
further obtain that

i) =B S0 ny i -7) -

7 +01A
(r+u+d)I(t) =
—pw 2
Be LG _(rip+d)g>0
uo+ ad

which is a contradiction. So I(t) = ¢ is valid for all
t € ¢ t, . This completes the proof.
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Theorem 3 System (2) is permanent
provided R, > 1.

Proof Denote (S(t) I(t)) be the solution
of system (2).From the first equation of system

(2) we have
$(1) = pA —“2—;@5( ).

By the similar argument as those in the proof of
Theorem 1 we have limS( ) = ¢. where
__ pAu(1 =9 (1 —e™)

(W +BA) (1 -(1 -8 e™)
&, 1s sufficiently small.

Weletd, ={(S1):q. <Sqg<sIS+1I<

q« — &

i} We know that (), is a global attractor in {2
7’

every solution of system (2) with initial conditions
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3 Discussions
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show pulse vaccination strategy always has a good

effect for disease control by decreasing R,.
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